Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes
-
摘要: 为应对日益严重的能源和环境污染问题,含铀废水的处理已成为当务之急。为了高效便捷地处理含铀废水,通过低共熔溶剂(DES) (氯化胆碱-草酸体系)处理苎麻纤维后接枝聚乙烯亚胺(PEI)制备聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM),并将其用于水溶液中铀酰离子(${\rm{UO}}_2^{2 + } $)的去除。研究了${\rm{UO}}_2^{2 + } $初始浓度、溶液pH值、吸附时间、温度等条件对吸附剂性能的影响。当铀酰离子初始浓度为20 mg/L、溶液pH为6时,铀酰离子吸附平衡容量达到302 mg·g−1;PEI/RAM的铀吸附过程更接近Langmuir模型和准二级动力学模型。在干扰金属离子(Ca2+、K+、Mg2+、Na+)存在时,PEI/RAM吸附剂表现出对铀酰离子较好的选择性,对${\rm{UO}}_2^{2 + } $ (20 mg/L)的吸附能力将近其他金属离子(20 mg/L)的70倍。
-
关键词:
- 聚乙烯亚胺(PEI) /
- 苎麻纤维 /
- 吸附 /
- 铀 /
- 低共熔溶剂(DES)
Abstract: In order to deal with the increasingly serious energy and environmental pollution problems, the treatment of uranium containing wastewater has become an urgent matter. In order to treat uranium containing wastewater efficiently and conveniently, polyethylenimide/ramie fiber self-sustaining membrane (PEI/RAM) was prepared by grafting PEI onto ramie fiber after treatment with low eutic solvent (DES) (choline chloride-oxalic acid system), and was used to remove uranyl ion (${\rm{UO}}_2^{2 + } $) in aqueous solution. The effects of initial concentration of ${\rm{UO}}_2^{2 + } $, pH value of solution, adsorption time and temperature on the properties of the adsorbent were studied. When the initial concentration of uranyl ion is 20 mg/L and the solution pH is 6, the adsorption equilibrium capacity of uranium reaches 302 mg·g−1. The uranium adsorption process of PEI/RAM is closer to Langmuir model and quasi-second-order kinetic model. In the presence of interfering metal ions (Ca2+, K+, Mg2+, Na+), the poly-ethylenimide/ramie fiber self-supported film (PEI/RAM) adsorbent showed good selectivity for uranyl ions, and its adsorption capacity for ${\rm{UO}}_2^{2 + } $ (20 mg/L) was nearly 70 times that of other metal ions (20 mg/L).-
Key words:
- polyethylenimide (PEI) /
- ramie fiber /
- adsorb /
- uranium /
- deep eutectic solvent (DES)
-
图 1 (a)聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM)流程示意图;接枝不同PEI浓度的SEM图像:(b) 0vol%PEI;(c) 5vol%PEI;(d) 10vol%PEI;(e) 15vol%PEI;15vol%PEI/RAM的EDS图谱(f)、XRD图谱(g)、XPS全谱(h)、FTIR图谱(i)
DES—Deep eutectic solvent
Figure 1. (a) Polythylenimide/ramie fiber self-supporting film (PEI/RAM) process diagram; SEM images of ramie fibers incorporated with varying PEI concentrations: (b) 0vol%PEI; (c) 5vol%PEI; (d) 10vol%PEI; (e) 15vol%PEI; EDS patterns (f), XRD patterns (g), XPS survey spectra (h), FTIR spectra (i) for 15vol%PEI/RAM
表 1 Langmuir模型和Freundlich模型的拟合参数
Table 1. Fitting parameters of Langmuir model and Freundlich model
Material Langmuir isotherm Freundlich isotherm KL/(L·mg−1) qm/(mg·g−1) R2 N KF/(mg1−1/n·g−1·L−1/n ) R2 Ramie fibers
grafted with PEI7.966×10−2 613 0.9905 2.251 94.343 0.9747 Notes: qm—Constants for adsorption capacity of Langmuir model; KL—Constants for affinity of Langmuir model; KF—Constant of Freundlich model; N—Favorability factor of the adsorption; R2—Fitting constant. 表 2 准一级模型和准二级模型的拟合参数
Table 2. Kinetic parameters of pseudo-first-order and pseudo-second-order models
Material Pseudo-first-order model Pseudo-second-order model q1,cal/(mg·g−1) k1/(min−1) R2 q2,cal/(mg·g−1) k2/(mg·g−1·min−1) R2 Ramie fibers
grafted with PEI278.281 0.262 0.9827 347 9.78×10-3 0.9934 Notes: q1,cal—Calculated equilibrium adsorption capacity; k1—Rate constants of pseudo-first-order model; k2—Rate constants of pseudo-second-order model; q2,cal—Calculated equilibrium adsorption capacity of pseudo-second-order kinetic model. -
[1] CHEIRA M F, ATIA B M, KOURAIM M N. Uranium(VI) recovery from acidic leach liquor by ambersep 920USO4 resin: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Radiation Researchand Applied Sciences, 2019, 10(4): 307-319. [2] 伍随意, 李仕友, 胡俊毅, 等. PEI 改性磁性酵母复合材料去除铀 (VI) 的性能[J]. 复合材料学报, 2021, 38(9): 3073-3083.WU Suiyi, LI Shiyou, HU Junyi, et al. Removal of uranium (VI) from PEI modified magnetic yeast composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083(in Chinese). [3] AYDIN F A, SOYLAK M. A novel multi-element coprecipita-tion technique for separation and enrichment of metal ionsin environmental samples[J]. Talanta, 2007, 73(1): 134-141. doi: 10.1016/j.talanta.2007.03.007 [4] 陈茜茜, 邹淑芬, 张爽, 等. 柠檬酸接枝苎麻纤维铀吸附及抗菌性能[J]. 高分子材料科学与工程, 2023, 39(4): 78-84.CHEN Xixi, ZHOU Shufen, ZHANG Shuang, et al. Uranium adsorption and antibacterial properties of ramie fiber grafted with citric acid[J]. Polymer Materials Science and Engineering, 2023, 39(4): 78-84(in Chinese). [5] MAGDALENA Z, KATARZYNA W. Deep eutectic solvents for polysaccharides processing: A review[J]. Carbohydrate Polymers, 2018, 200: 361-380. doi: 10.1016/j.carbpol.2018.07.078 [6] PABLO DOMÍNGUEZ DE M, MAUGERI Z. Ionic liquids in biotransformations: From proof-of-concept to emerging deep-eutectic-solvents[J]. Current Opinion in Chemical Biology, 2010, 15(2): 220-225. [7] LIN G, TANG Q, HUANG H, et al. One-step extraction of ramie cellulose fibers and reutilization of degumming solution[J]. Textile Research Journal, 2022, 92(19-20): 3579-3590. doi: 10.1177/00405175221086886 [8] LING Z, GUO Z, HUANG C, et al. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility[J]. Bioresource Technology, 2020, 305: 123025. doi: 10.1016/j.biortech.2020.123025 [9] JIANG Z Y, WANG F, PING F, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2018, 119: 423-430. [10] SAS O G, CASTRO M, DOMÍNGUEZ N, et al. Removing phenolic pollutants using deep eutectic solvents[J]. Separation and Purification Technology, 2019, 227: 115703. [11] HAKIMIN S M, DALINA S, RIZANA Y, et al. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2018, 118: 1183-1192. doi: 10.1016/j.ijbiomac.2018.06.103 [12] ZHE J, JIU G Y, PING W, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules, 2018, 119: 423-430. doi: 10.1016/j.ijbiomac.2018.07.161 [13] YU W, WANG C, YI Y, et al. Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production[J]. ACS Omega, 2020, 5(10): 5580-5588 . doi: 10.1021/acsomega.0c00506 [14] 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对U(VI)的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153.WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) by functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153(in Chinese). [15] CLAUDIU L, MIRCEA D, MIHAI P, et al. Linear and branched PEIs (polyethylenimines) and their property space[J]. International Journal of Molecular Sciences, 2016, 17(4): 555. doi: 10.3390/ijms17040555 [16] QUAN X, SUN Z, MENG H, et al. Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red[J]. Journal of Solid State Chemistry, 2019, 270: 231-241. doi: 10.1016/j.jssc.2018.11.021 [17] YUSOF N H, FOO K Y, WILSON L D, et al. Microwave-assisted synthesis of polyethyleneimine grafted chitosan beads for the adsorption of acid red 27[J]. Journal of Polymers and the Environment, 2020, 2: 28. [18] LI Y, ZHU H, ZHANG C, et al. PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution[J]. Cellulose, 2018, 25: 4757-4769. doi: 10.1007/s10570-018-1868-2 [19] SON M, HA Y, CHOI M C, et al. Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane[J]. European Polymer Journal, 2008, 44(7): 2236-2243. doi: 10.1016/j.eurpolymj.2008.04.037 [20] SEYEDEH P Z, MASUDUZ M. Synthesis of amine functionalized cellulose nanocrystals: Optimization and characterization[J]. Carbohydrate Research, 2015, 409: 48-55. doi: 10.1016/j.carres.2015.03.009 [21] LI S, YANG P, LIU X, et al. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption[J]. Journal of Materials Chemistry A, 2019, 7(28): 16902-16911. doi: 10.1039/C9TA04562G [22] LIU C, LI Y, LIU S, et al. Efficient extraction of $\scriptstyle{\rm{UO}}_2^{2 + } $ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): Adsorption performance and mechanism[J].Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(11): 4635-4648. doi: 10.1007/s10967-022-08523-7 [23] ARAKI J, WADA M, KUGA S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting[J]. Langmuir, 2001, 17(1): 21-27. doi: 10.1021/la001070m