Loading [MathJax]/jax/output/SVG/jax.js

聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能

张爽, 唐勇, 安再旭, 陈茜茜, 那兵, 柳和生, 柳玉辉

张爽, 唐勇, 安再旭, 等. 聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能[J]. 复合材料学报, 2024, 41(11): 6036-6044. DOI: 10.13801/j.cnki.fhclxb.20240204.001
引用本文: 张爽, 唐勇, 安再旭, 等. 聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能[J]. 复合材料学报, 2024, 41(11): 6036-6044. DOI: 10.13801/j.cnki.fhclxb.20240204.001
ZHANG Shuang, TANG Yong, AN Zaixu, et al. Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6036-6044. DOI: 10.13801/j.cnki.fhclxb.20240204.001
Citation: ZHANG Shuang, TANG Yong, AN Zaixu, et al. Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6036-6044. DOI: 10.13801/j.cnki.fhclxb.20240204.001

聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能

基金项目: 国家基金委青年科学基金项目(22006013);国家基金委地区科学基金项目(22266003);江西省主要学科学术和技术带头人青年人才项目(20225BCJ23020);中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2023NRE-LH-18)
详细信息
    通讯作者:

    那兵,博士,教授,硕士生导师,研究方向为环境与能源高分子材料 E-mail: bna@ecut.edu.cn

    柳玉辉,博士,副教授,硕士生导师,研究方向为核化学与放射化学、核燃料循环与材料 E-mail: liuyuhui@ecut.edu.cn

  • 中图分类号: X703.1;TB332

Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes

Funds: National Foundation Committee Youth Science Fund Project (22006013); Regional Science Fund Project of National Foundation Committee (22266003); Jiangxi Provincial Innovation and Entrepreneurship Training Program for College Students (20225BCJ23020); China Uranium Corporation Limited-East China University of Technology State Key Laboratory of Nuclear Resources and Environment Joint Innovation Fund Project (2023NRE-LH-18)
  • 摘要:

    为应对日益严重的能源和环境污染问题,含铀废水的处理已成为当务之急。为了高效便捷地处理含铀废水,通过低共熔溶剂(DES) (氯化胆碱-草酸体系)处理苎麻纤维后接枝聚乙烯亚胺(PEI)制备聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM),并将其用于水溶液中铀酰离子(UO2+2)的去除。研究了UO2+2初始浓度、溶液pH值、吸附时间、温度等条件对吸附剂性能的影响。当铀酰离子初始浓度为20 mg/L、溶液pH为6时,铀酰离子吸附平衡容量达到302 mg·g−1;PEI/RAM的铀吸附过程更接近Langmuir模型和准二级动力学模型。在干扰金属离子(Ca2+、K+、Mg2+、Na+)存在时,PEI/RAM吸附剂表现出对铀酰离子较好的选择性,对UO2+2 (20 mg/L)的吸附能力将近其他金属离子(20 mg/L)的70倍。

     

    Abstract:

    In order to deal with the increasingly serious energy and environmental pollution problems, the treatment of uranium containing wastewater has become an urgent matter. In order to treat uranium containing wastewater efficiently and conveniently, polyethylenimide/ramie fiber self-sustaining membrane (PEI/RAM) was prepared by grafting PEI onto ramie fiber after treatment with low eutic solvent (DES) (choline chloride-oxalic acid system), and was used to remove uranyl ion (UO2+2) in aqueous solution. The effects of initial concentration of UO2+2, pH value of solution, adsorption time and temperature on the properties of the adsorbent were studied. When the initial concentration of uranyl ion is 20 mg/L and the solution pH is 6, the adsorption equilibrium capacity of uranium reaches 302 mg·g−1. The uranium adsorption process of PEI/RAM is closer to Langmuir model and quasi-second-order kinetic model. In the presence of interfering metal ions (Ca2+, K+, Mg2+, Na+), the poly-ethylenimide/ramie fiber self-supported film (PEI/RAM) adsorbent showed good selectivity for uranyl ions, and its adsorption capacity for UO2+2 (20 mg/L) was nearly 70 times that of other metal ions (20 mg/L).

     

  • 图  1   (a)聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM)流程示意图;接枝不同PEI浓度的SEM图像:(b) 0vol%PEI;(c) 5vol%PEI;(d) 10vol%PEI;(e) 15vol%PEI;15vol%PEI/RAM的EDS图谱(f)、XRD图谱(g)、XPS全谱(h)、FTIR图谱(i)

    DES—Deep eutectic solvent

    Figure  1.   (a) Polythylenimide/ramie fiber self-supporting film (PEI/RAM) process diagram; SEM images of ramie fibers incorporated with varying PEI concentrations: (b) 0vol%PEI; (c) 5vol%PEI; (d) 10vol%PEI; (e) 15vol%PEI; EDS patterns (f), XRD patterns (g), XPS survey spectra (h), FTIR spectra (i) for 15vol%PEI/RAM

    图  2   (a) PEI浓度与铀吸附容量的关系;(b) pH与铀吸附容量的关系

    C0—Initial uranyl ion concentration

    Figure  2.   (a) Relationship between PEI content and uranium adsorption capacity; (b) Relationship between pH and uranium adsorption capacity

    图  3   PEI/RAM吸附等温线(a)、Langmuir模型拟合结果图(b)、Freundlich模型拟合结果图(c)

    Figure  3.   PEI/RAM adsorption isotherm (a), Langmuir model fitting result chart (b), Freundlich model fitting result chart (c)

    qe—Euilibrium adsorption capacity; Ce—Balance uranium ion concentration; R2−Fitting constant

    图  4   PEI/RAM的吸附动力学(a)、准一级拟合(b)和准二级拟合(c)

    Figure  4.   Adsorption kinetics (a), pseudo-first-order model (b) and pseudo-second-order model (c) of PEI/RAM

    qt—Adsorption capacity at equilibrium at time t of adsorption

    图  5   PEI/RAM的温度对吸附的影响(a)、lnKd与1/T的关系(b)、解吸和再生循环图(c)

    Kd—Distribution coefficient; T—Kelvin temperature

    Figure  5.   Uranium uptake capacity versus temperature (a), relationship between lnKd and 1/T (b), desorption and regeneration cycles (c) of PEI/RAM

    图  6   PEI/RAM铀吸附后的EDS图(a)、吸附前后FTIR图谱(b)及吸附后的XPS全谱图((c), (d))

    Figure  6.   EDS mapping (a), FTIR spectra (b), XPS survey spectra ((c), (d)) of ramie fibers grafted with PEI/RAM before and after uranium adsorption

    图  7   (a) UO2 2+在干扰金属离子中的分布系数;(b)金属离子对铀吸附能力的影响

    Figure  7.   (a) Distribution coefficient of uranyl ions in interfering metal ions; (b) Influence of metal ions on uranium adsorption capacity

    表  1   Langmuir模型和Freundlich模型的拟合参数

    Table  1   Fitting parameters of Langmuir model and Freundlich model

    Material Langmuir isotherm Freundlich isotherm
    KL/(L·mg−1) qm/(mg·g−1) R2 N KF/(mg1−1/n·g−1·L−1/n ) R2
    Ramie fibers
    grafted with PEI
    7.966×10−2 613 0.9905 2.251 94.343 0.9747
    Notes: qm—Constants for adsorption capacity of Langmuir model; KL—Constants for affinity of Langmuir model; KF—Constant of Freundlich model; N—Favorability factor of the adsorption; R2—Fitting constant.
    下载: 导出CSV

    表  2   准一级模型和准二级模型的拟合参数

    Table  2   Kinetic parameters of pseudo-first-order and pseudo-second-order models

    Material Pseudo-first-order model Pseudo-second-order model
    q1,cal/(mg·g−1) k1/(min−1) R2 q2,cal/(mg·g−1) k2/(mg·g−1·min−1) R2
    Ramie fibers
    grafted with PEI
    278.281 0.262 0.9827 347 9.78×10-3 0.9934
    Notes: q1,cal—Calculated equilibrium adsorption capacity; k1—Rate constants of pseudo-first-order model; k2—Rate constants of pseudo-second-order model; q2,cal—Calculated equilibrium adsorption capacity of pseudo-second-order kinetic model.
    下载: 导出CSV
  • [1]

    CHEIRA M F, ATIA B M, KOURAIM M N. Uranium(VI) recovery from acidic leach liquor by ambersep 920USO4 resin: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Radiation Researchand Applied Sciences, 2019, 10(4): 307-319.

    [2] 伍随意, 李仕友, 胡俊毅, 等. PEI 改性磁性酵母复合材料去除铀 (VI) 的性能[J]. 复合材料学报, 2021, 38(9): 3073-3083.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Removal of uranium (VI) from PEI modified magnetic yeast composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083(in Chinese).

    [3]

    AYDIN F A, SOYLAK M. A novel multi-element coprecipita-tion technique for separation and enrichment of metal ionsin environmental samples[J]. Talanta, 2007, 73(1): 134-141. DOI: 10.1016/j.talanta.2007.03.007

    [4] 陈茜茜, 邹淑芬, 张爽, 等. 柠檬酸接枝苎麻纤维铀吸附及抗菌性能[J]. 高分子材料科学与工程, 2023, 39(4): 78-84.

    CHEN Xixi, ZHOU Shufen, ZHANG Shuang, et al. Uranium adsorption and antibacterial properties of ramie fiber grafted with citric acid[J]. Polymer Materials Science and Engineering, 2023, 39(4): 78-84(in Chinese).

    [5]

    MAGDALENA Z, KATARZYNA W. Deep eutectic solvents for polysaccharides processing: A review[J]. Carbohydrate Polymers, 2018, 200: 361-380. DOI: 10.1016/j.carbpol.2018.07.078

    [6]

    PABLO DOMÍNGUEZ DE M, MAUGERI Z. Ionic liquids in biotransformations: From proof-of-concept to emerging deep-eutectic-solvents[J]. Current Opinion in Chemical Biology, 2010, 15(2): 220-225.

    [7]

    LIN G, TANG Q, HUANG H, et al. One-step extraction of ramie cellulose fibers and reutilization of degumming solution[J]. Textile Research Journal, 2022, 92(19-20): 3579-3590. DOI: 10.1177/00405175221086886

    [8]

    LING Z, GUO Z, HUANG C, et al. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility[J]. Bioresource Technology, 2020, 305: 123025. DOI: 10.1016/j.biortech.2020.123025

    [9]

    JIANG Z Y, WANG F, PING F, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2018, 119: 423-430.

    [10]

    SAS O G, CASTRO M, DOMÍNGUEZ N, et al. Removing phenolic pollutants using deep eutectic solvents[J]. Separation and Purification Technology, 2019, 227: 115703.

    [11]

    HAKIMIN S M, DALINA S, RIZANA Y, et al. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2018, 118: 1183-1192. DOI: 10.1016/j.ijbiomac.2018.06.103

    [12]

    ZHE J, JIU G Y, PING W, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules, 2018, 119: 423-430. DOI: 10.1016/j.ijbiomac.2018.07.161

    [13]

    YU W, WANG C, YI Y, et al. Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production[J]. ACS Omega, 2020, 5(10): 5580-5588 . DOI: 10.1021/acsomega.0c00506

    [14] 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对U(VI)的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153.

    WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) by functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153(in Chinese).

    [15]

    CLAUDIU L, MIRCEA D, MIHAI P, et al. Linear and branched PEIs (polyethylenimines) and their property space[J]. International Journal of Molecular Sciences, 2016, 17(4): 555. DOI: 10.3390/ijms17040555

    [16]

    QUAN X, SUN Z, MENG H, et al. Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red[J]. Journal of Solid State Chemistry, 2019, 270: 231-241. DOI: 10.1016/j.jssc.2018.11.021

    [17]

    YUSOF N H, FOO K Y, WILSON L D, et al. Microwave-assisted synthesis of polyethyleneimine grafted chitosan beads for the adsorption of acid red 27[J]. Journal of Polymers and the Environment, 2020, 2: 28.

    [18]

    LI Y, ZHU H, ZHANG C, et al. PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution[J]. Cellulose, 2018, 25: 4757-4769. DOI: 10.1007/s10570-018-1868-2

    [19]

    SON M, HA Y, CHOI M C, et al. Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane[J]. European Polymer Journal, 2008, 44(7): 2236-2243. DOI: 10.1016/j.eurpolymj.2008.04.037

    [20]

    SEYEDEH P Z, MASUDUZ M. Synthesis of amine functionalized cellulose nanocrystals: Optimization and characterization[J]. Carbohydrate Research, 2015, 409: 48-55. DOI: 10.1016/j.carres.2015.03.009

    [21]

    LI S, YANG P, LIU X, et al. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption[J]. Journal of Materials Chemistry A, 2019, 7(28): 16902-16911. DOI: 10.1039/C9TA04562G

    [22]

    LIU C, LI Y, LIU S, et al. Efficient extraction of UO2+2 from seawater by polyethylenimine functionalized activated carbon (PEI-AC): Adsorption performance and mechanism[J].Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(11): 4635-4648. DOI: 10.1007/s10967-022-08523-7

    [23]

    ARAKI J, WADA M, KUGA S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting[J]. Langmuir, 2001, 17(1): 21-27. DOI: 10.1021/la001070m

  • 期刊类型引用(0)

    其他类型引用(1)

  • 目的 

    为了应对日益严重的能源危机和较为严重的环境污染问题,如何处理含铀废水的问题已经成为当务之急。为高效便捷的处理含铀废水,通过低共熔溶剂(DES,氯化胆碱-草酸体系)处理苎麻纤维后接枝聚乙烯亚胺(PEI)制备聚乙烯亚胺/苎麻纤维膜(PEI/RAM),并将其运用于水溶液中铀酰离子(UO)的去除。

    方法 

    利用低共熔溶剂的手段,将苎麻纤维成直径更小的纤维并引入羧基,使其纤维化。利用简单的水热接枝法,使聚乙烯亚胺接枝到苎麻纤维上,并制成聚乙烯亚胺/苎麻纤维膜。采用现代表征技术SEM-EDS、XRD、XPS及FTIR对改性前后的材料进行表征分析,探究改性前后材料的微观结构变化。通过批量静态实验探究温度、pH、时间、PEI含量、干扰离子及不同初始铀酰离子(UO)浓度等影响因素对吸附剂去除铀酰离子的影响。通过连续的吸附/脱附实验探究材料的再生和再利用能力。根据表征结构和吸附实验结果探究吸附剂对铀酰离子的机理。

    结果 

    (1)通过SEM-EDS、XPS、XRD及FTIR等表征结果表明在没有破坏原来苎麻纤维的结构的情况下,接枝了聚乙烯亚胺的材料表现出更强的N-H基团结合能,形成了酰胺键(O=C-NH),表明DES-苎麻纤维的羧基与PEI的氨基发生了缩合,成功将聚乙烯亚胺(PEI)接枝到苎麻纤维上。此外,PEI中大量的氨基与铀酰离子具有较强结合能,能够有效的吸附铀酰离子。(2)批量静态吸附实验表明,当铀酰离子初始浓度为20mg/L、溶液pH为6、饱和吸附时间16h、温度为15℃时,铀酰离子吸附平衡容量达到302mg·g,对铀酰离子具有很好的吸附效果。吸附动力学和等温线分析表明,吸附过程符合准二级动力学模型,表明化学吸附占主导作用,吸附等温线符合Langmuir模型,说明这意味着PEI接枝苎麻纤维膜的吸附行为更接近单分子层吸附机制。(3)采用2 mol·L HNO水溶液对PEI接枝苎麻纤维膜上吸附的铀酰离子进行解吸操作,第一次脱附的效果非常显著,脱附率高达89.8%。在随后的再吸附过程中,吸附容量达到273 mol·g,与初始吸附容量(302 mg·g)相比只有轻微的下降。值得注意的是,即使经过三次的脱附与吸附循环,该膜的吸附容量依然可以保持在114 mg·g的水平。这些数据明确地展示了PEI接枝苎麻纤维膜具有出色的再生和再利用性能。

    结论 

    苎麻纤维有相互连接的粘性成分覆盖在生苎麻上,需将其去除以提取分离的纤维,利用低共熔溶剂手段有效的将苎麻纤维进行分离,并不破坏其结构。所合成的聚乙烯亚胺/苎麻纤维膜(PEI/RAM),具有显著的铀酰离子吸附性能,在含有Na、Mg、Ca、K等潜在干扰金属离子的环境中仍对铀酰离子具有很好的选择性,并具有很好的循环再生性能。

图(7)  /  表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  190
  • PDF下载量:  11
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-01-08
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-02-05
  • 发布日期:  2024-02-05
  • 刊出日期:  2024-11-14

目录

    /

    返回文章
    返回