留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能

张爽 唐勇 安再旭 陈茜茜 那兵 柳和生 柳玉辉

张爽, 唐勇, 安再旭, 等. 聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能[J]. 复合材料学报, 2024, 41(11): 5903-5911. doi: 10.13801/j.cnki.fhclxb.20240204.001
引用本文: 张爽, 唐勇, 安再旭, 等. 聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能[J]. 复合材料学报, 2024, 41(11): 5903-5911. doi: 10.13801/j.cnki.fhclxb.20240204.001
ZHANG Shuang, TANG Yong, AN Zaixu, et al. Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5903-5911. doi: 10.13801/j.cnki.fhclxb.20240204.001
Citation: ZHANG Shuang, TANG Yong, AN Zaixu, et al. Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5903-5911. doi: 10.13801/j.cnki.fhclxb.20240204.001

聚乙烯亚胺/苎麻纤维自撑膜对铀酰离子的去除性能

doi: 10.13801/j.cnki.fhclxb.20240204.001
基金项目: 国家基金委青年科学基金项目(22006013);国家基金委地区科学基金项目(22266003);江西省主要学科学术和技术带头人青年人才项目(20225BCJ23020);中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2023NRE-LH-18)
详细信息
    通讯作者:

    那兵,博士,教授,硕士生导师,研究方向为环境与能源高分子材料 E-mail: bna@ecut.edu.cn

    柳玉辉,博士,副教授,硕士生导师,研究方向为核化学与放射化学、核燃料循环与材料 E-mail: liuyuhui@ecut.edu.cn

  • 中图分类号: X703.1;TB332

Research on the uranium ion removal performance of polyethyleneimine/ramie fiber self-supporting membranes

Funds: National Foundation Committee Youth Science Fund Project (22006013); Regional Science Fund Project of National Foundation Committee (22266003); Jiangxi Provincial Innovation and Entrepreneurship Training Program for College Students (20225BCJ23020); China Uranium Corporation Limited-East China University of Technology State Key Laboratory of Nuclear Resources and Environment Joint Innovation Fund Project (2023NRE-LH-18)
  • 摘要: 为应对日益严重的能源和环境污染问题,含铀废水的处理已成为当务之急。为了高效便捷地处理含铀废水,通过低共熔溶剂(DES) (氯化胆碱-草酸体系)处理苎麻纤维后接枝聚乙烯亚胺(PEI)制备聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM),并将其用于水溶液中铀酰离子(${\rm{UO}}_2^{2 + } $)的去除。研究了${\rm{UO}}_2^{2 + } $初始浓度、溶液pH值、吸附时间、温度等条件对吸附剂性能的影响。当铀酰离子初始浓度为20 mg/L、溶液pH为6时,铀酰离子吸附平衡容量达到302 mg·g−1;PEI/RAM的铀吸附过程更接近Langmuir模型和准二级动力学模型。在干扰金属离子(Ca2+、K+、Mg2+、Na+)存在时,PEI/RAM吸附剂表现出对铀酰离子较好的选择性,对${\rm{UO}}_2^{2 + } $ (20 mg/L)的吸附能力将近其他金属离子(20 mg/L)的70倍。

     

  • 图  1  (a)聚乙烯亚胺/苎麻纤维自撑膜(PEI/RAM)流程示意图;接枝不同PEI浓度的SEM图像:(b) 0vol%PEI;(c) 5vol%PEI;(d) 10vol%PEI;(e) 15vol%PEI;15vol%PEI/RAM的EDS图谱(f)、XRD图谱(g)、XPS全谱(h)、FTIR图谱(i)

    DES—Deep eutectic solvent

    Figure  1.  (a) Polythylenimide/ramie fiber self-supporting film (PEI/RAM) process diagram; SEM images of ramie fibers incorporated with varying PEI concentrations: (b) 0vol%PEI; (c) 5vol%PEI; (d) 10vol%PEI; (e) 15vol%PEI; EDS patterns (f), XRD patterns (g), XPS survey spectra (h), FTIR spectra (i) for 15vol%PEI/RAM

    图  2  (a) PEI浓度与铀吸附容量的关系;(b) pH与铀吸附容量的关系

    C0—Initial uranyl ion concentration

    Figure  2.  (a) Relationship between PEI content and uranium adsorption capacity; (b) Relationship between pH and uranium adsorption capacity

    图  3  PEI/RAM吸附等温线(a)、Langmuir模型拟合结果图(b)、Freundlich模型拟合结果图(c)

    Figure  3.  PEI/RAM adsorption isotherm (a), Langmuir model fitting result chart (b), Freundlich model fitting result chart (c)

    qe—Euilibrium adsorption capacity; Ce—Balance uranium ion concentration; R2−Fitting constant

    图  4  PEI/RAM的吸附动力学(a)、准一级拟合(b)和准二级拟合(c)

    Figure  4.  Adsorption kinetics (a), pseudo-first-order model (b) and pseudo-second-order model (c) of PEI/RAM

    qt—Adsorption capacity at equilibrium at time t of adsorption

    图  5  PEI/RAM的温度对吸附的影响(a)、lnKd与1/T的关系(b)、解吸和再生循环图(c)

    Kd—Distribution coefficient; T—Kelvin temperature

    Figure  5.  Uranium uptake capacity versus temperature (a), relationship between lnKd and 1/T (b), desorption and regeneration cycles (c) of PEI/RAM

    图  6  PEI/RAM铀吸附后的EDS图(a)、吸附前后FTIR图谱(b)及吸附后的XPS全谱图((c), (d))

    Figure  6.  EDS mapping (a), FTIR spectra (b), XPS survey spectra ((c), (d)) of ramie fibers grafted with PEI/RAM before and after uranium adsorption

    图  7  (a) UO2 2+在干扰金属离子中的分布系数;(b)金属离子对铀吸附能力的影响

    Figure  7.  (a) Distribution coefficient of uranyl ions in interfering metal ions; (b) Influence of metal ions on uranium adsorption capacity

    表  1  Langmuir模型和Freundlich模型的拟合参数

    Table  1.   Fitting parameters of Langmuir model and Freundlich model

    Material Langmuir isotherm Freundlich isotherm
    KL/(L·mg−1) qm/(mg·g−1) R2 N KF/(mg1−1/n·g−1·L−1/n ) R2
    Ramie fibers
    grafted with PEI
    7.966×10−2 613 0.9905 2.251 94.343 0.9747
    Notes: qm—Constants for adsorption capacity of Langmuir model; KL—Constants for affinity of Langmuir model; KF—Constant of Freundlich model; N—Favorability factor of the adsorption; R2—Fitting constant.
    下载: 导出CSV

    表  2  准一级模型和准二级模型的拟合参数

    Table  2.   Kinetic parameters of pseudo-first-order and pseudo-second-order models

    Material Pseudo-first-order model Pseudo-second-order model
    q1,cal/(mg·g−1) k1/(min−1) R2 q2,cal/(mg·g−1) k2/(mg·g−1·min−1) R2
    Ramie fibers
    grafted with PEI
    278.281 0.262 0.9827 347 9.78×10-3 0.9934
    Notes: q1,cal—Calculated equilibrium adsorption capacity; k1—Rate constants of pseudo-first-order model; k2—Rate constants of pseudo-second-order model; q2,cal—Calculated equilibrium adsorption capacity of pseudo-second-order kinetic model.
    下载: 导出CSV
  • [1] CHEIRA M F, ATIA B M, KOURAIM M N. Uranium(VI) recovery from acidic leach liquor by ambersep 920USO4 resin: Kinetic, equilibrium and thermodynamic studies[J]. Journal of Radiation Researchand Applied Sciences, 2019, 10(4): 307-319.
    [2] 伍随意, 李仕友, 胡俊毅, 等. PEI 改性磁性酵母复合材料去除铀 (VI) 的性能[J]. 复合材料学报, 2021, 38(9): 3073-3083.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Removal of uranium (VI) from PEI modified magnetic yeast composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083(in Chinese).
    [3] AYDIN F A, SOYLAK M. A novel multi-element coprecipita-tion technique for separation and enrichment of metal ionsin environmental samples[J]. Talanta, 2007, 73(1): 134-141. doi: 10.1016/j.talanta.2007.03.007
    [4] 陈茜茜, 邹淑芬, 张爽, 等. 柠檬酸接枝苎麻纤维铀吸附及抗菌性能[J]. 高分子材料科学与工程, 2023, 39(4): 78-84.

    CHEN Xixi, ZHOU Shufen, ZHANG Shuang, et al. Uranium adsorption and antibacterial properties of ramie fiber grafted with citric acid[J]. Polymer Materials Science and Engineering, 2023, 39(4): 78-84(in Chinese).
    [5] MAGDALENA Z, KATARZYNA W. Deep eutectic solvents for polysaccharides processing: A review[J]. Carbohydrate Polymers, 2018, 200: 361-380. doi: 10.1016/j.carbpol.2018.07.078
    [6] PABLO DOMÍNGUEZ DE M, MAUGERI Z. Ionic liquids in biotransformations: From proof-of-concept to emerging deep-eutectic-solvents[J]. Current Opinion in Chemical Biology, 2010, 15(2): 220-225.
    [7] LIN G, TANG Q, HUANG H, et al. One-step extraction of ramie cellulose fibers and reutilization of degumming solution[J]. Textile Research Journal, 2022, 92(19-20): 3579-3590. doi: 10.1177/00405175221086886
    [8] LING Z, GUO Z, HUANG C, et al. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility[J]. Bioresource Technology, 2020, 305: 123025. doi: 10.1016/j.biortech.2020.123025
    [9] JIANG Z Y, WANG F, PING F, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2018, 119: 423-430.
    [10] SAS O G, CASTRO M, DOMÍNGUEZ N, et al. Removing phenolic pollutants using deep eutectic solvents[J]. Separation and Purification Technology, 2019, 227: 115703.
    [11] HAKIMIN S M, DALINA S, RIZANA Y, et al. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2018, 118: 1183-1192. doi: 10.1016/j.ijbiomac.2018.06.103
    [12] ZHE J, JIU G Y, PING W, et al. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea[J]. International Journal of Biological Macromolecules, 2018, 119: 423-430. doi: 10.1016/j.ijbiomac.2018.07.161
    [13] YU W, WANG C, YI Y, et al. Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production[J]. ACS Omega, 2020, 5(10): 5580-5588 . doi: 10.1021/acsomega.0c00506
    [14] 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对U(VI)的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153.

    WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) by functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153(in Chinese).
    [15] CLAUDIU L, MIRCEA D, MIHAI P, et al. Linear and branched PEIs (polyethylenimines) and their property space[J]. International Journal of Molecular Sciences, 2016, 17(4): 555. doi: 10.3390/ijms17040555
    [16] QUAN X, SUN Z, MENG H, et al. Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red[J]. Journal of Solid State Chemistry, 2019, 270: 231-241. doi: 10.1016/j.jssc.2018.11.021
    [17] YUSOF N H, FOO K Y, WILSON L D, et al. Microwave-assisted synthesis of polyethyleneimine grafted chitosan beads for the adsorption of acid red 27[J]. Journal of Polymers and the Environment, 2020, 2: 28.
    [18] LI Y, ZHU H, ZHANG C, et al. PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution[J]. Cellulose, 2018, 25: 4757-4769. doi: 10.1007/s10570-018-1868-2
    [19] SON M, HA Y, CHOI M C, et al. Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane[J]. European Polymer Journal, 2008, 44(7): 2236-2243. doi: 10.1016/j.eurpolymj.2008.04.037
    [20] SEYEDEH P Z, MASUDUZ M. Synthesis of amine functionalized cellulose nanocrystals: Optimization and characterization[J]. Carbohydrate Research, 2015, 409: 48-55. doi: 10.1016/j.carres.2015.03.009
    [21] LI S, YANG P, LIU X, et al. Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption[J]. Journal of Materials Chemistry A, 2019, 7(28): 16902-16911. doi: 10.1039/C9TA04562G
    [22] LIU C, LI Y, LIU S, et al. Efficient extraction of $\scriptstyle{\rm{UO}}_2^{2 + } $ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): Adsorption performance and mechanism[J].Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(11): 4635-4648. doi: 10.1007/s10967-022-08523-7
    [23] ARAKI J, WADA M, KUGA S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting[J]. Langmuir, 2001, 17(1): 21-27. doi: 10.1021/la001070m
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  147
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-20
  • 网络出版日期:  2024-02-06
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回