径切面木材电极双向传质通道构筑及其超级电容器应用

Construction of bidirectional mass transfer channel of radial section wood electrode and application of supercapacitor

  • 摘要: 木材天然的低曲率多孔结构(即细胞腔)能够为电解质离子的传输与客体材料的负载提供通道与空间,使木材成为一种潜在的自支撑电极基材。径切面木材具有较好的力学性能(~11 MPa),且能够实现连续旋切加工生产,但细胞壁中紧密排列的纤维结构阻碍了功能客体材料的进入以及电解质离子的传输,极大地限制了径切面木材在电极基材中的应用。本研究通过激光打孔在径切面木材上创制丰富、定向且贯通的孔道,并协同细胞腔孔径在木材电极中形成垂直双向传质通道,实现了功能纳米材料MXene的均匀、高量负载(5 mg·cm−2)。所得木材/MXene复合自支撑电极在0.2 mA·cm−2的电流密度下比电容达到1265 mF·cm−2,当电流密度增大100倍后,电极展现74.4%的高电容保持率。本研究提出的双向传质通道结构设计策略对于径切面木材广泛应用于储能领域具有重要意义。

     

    Abstract: The natural low curvature porous structure (i.e., cell cavities) of wood facilitates the transport of electrolyte ions and the accommodation of functional materials, positioning wood as a potential self-supporting electrode substrate. The radial section exhibits favorable mechanical properties (~11 MPa) and can be produced by continuous rotary cutting. However, the densely arranged fiber structure in the cell wall hinders the entry of functional guest materials and the transport of electrolyte ions, greatly limiting its application in electrode substrates. This study created rich, oriented, and penetrating channels on the radial section by laser drilling, forming bidirectional mass transfer channels in conjunction with the natural cell cavities in the wood electrode, enabling uniform and high loading of the functional nanomaterial MXene (5 mg·cm−2) in the wood/MXene. The resultant electrode shows a high specific capacitance of 1265 mF·cm−2 at a current density of 0.2 mA·cm−2, and such a specific capacitance can be retained 74.4% while the current density increases 100 folds. The bidirectional mass transfer channel structure design strategy proposed in this study is of great significance for the wide application of radial section wood in the field of energy storage.

     

/

返回文章
返回