Adsorption behaviour and mechanism of tetracycline by sorghum straw-loaded HKUST-1
-
摘要:
四环素(TC)是一种难降解广谱抗生素,广泛存在于畜牧业排放的污废中,排放后会对水体生态环境造成严重的污染,通过吸附法可有效去除。本研究以高粱秸秆(SS)为基材,通过原位生长法在SS表面负载MOFs (HKUST-1)制备SS@HKUST-1复合材料,用于对TC的吸附去除,探究复合材料对TC的吸附行为及吸附机制。研究表明:当pH=7、温度T=25℃、HKUST-1的负载量为31wt%时,吸附容量达到95 mg/g。吸附过程符合准二级动力学模型,吸附等温线符合Freundlich模型,表明复合材料对TC吸附属于多分子层化学吸附。因此,SS@HKUST-1对水中TC的去除具有良好的应用前景。
Abstract:Tetracycline (TC) is a refractory broad-spectrum antibiotic, that is widely present in the waste discharged from animal husbandry, which will cause serious pollution to the ecological environment of water bodies after discharge, and it can be effectively removed by adsorption. In this work, sorghum straw (SS) was used as the substrate to prepare SS@HKUST-1 composites by in-situ growth of MOFs (HKUST-1) on the surface of SS for the adsorption and removal of TC, investigating the adsorption behaviour and adsorption mechanism of composites on TC. The results show that the adsorption capacity reaches 95 mg/g when pH=7, temperature T=25℃ and the load capacity of HKUST-1 is 31wt%. The adsorption process conforms to the pseudo-second-order kinetic model, and the adsorption isotherm conforms to the Freundlich model, which suggests the existence of multimolecular layer chemisorption between TC and adsorbent. Therefore, SS@HKUST-1 has a good application prospect for tetracycline removal in water.
-
Keywords:
- sorghum straw /
- HKUST-1 /
- in-situ growth /
- tetracycline /
- adsorption
-
-
图 6 不同条件下TC吸附效果:(a)不同Cu(NO3)2质量;(b) SS和HKUST-1;(c)吸附剂用量;(d)不同溶液pH值; (e)不同pH值下SS@HKUST-1的Zeta电位
Figure 6. Effects of different condition on TC adsorption: (a) Different masses of Cu(NO3)2; (b) SS and HKUST-1; (c) Adsorbent dosages; (d) Different pH values; (e) Zeta potential of SS@HKUST-1 under different pH values
qe—Equilibrium adsorption capacity
图 8 (a) TC在SS@HKUST-1表面的吸附等温线;(b) Langmuir吸附等温线;(c) Freundlich吸附等温线;(d)不同温度处理SS@HKUST-1对吸附TC的影响
Figure 8. (a) Adsorption isotherms of TC onto the surfaces of SS@HKUST-1; (b) Langmuir adsorption isotherm; (c) Freundlich adsorption isotherm; (d) Effect of different temperatures treatment SS@HKUST-1 on adsorbed TC
Ce—Concentration at adsorption equilibrium; T—Temperature
表 1 SS@HKUST-1吸附TC的动力学模型拟合参数
Table 1 Kinetic model fitting parameters for SS@HKUST-1 adsorbed TC
qe,exp/
(mg·g−1)Pseudo-first-order
kineticPseudo-second-order
kinetick1/
min−1qe,cal/
(mg·g−1)R2 k2/
(g·mg−1·min−1)qe,cal/
(mg·g −1)R2 95.44 0.002 65.06 0.947 0.010 1.87 0.994 Notes: qe,exp—Actual adsorption capacity at adsorption equilibrium; qe,cal—Calculated adsorption capacity at adsorption equilibrium; k1—Pseudo-first-order adsorption rate constant; k2—Pseudo-second-order adsorption rate constant; R2—Correlation coefficient of Langmuir and Freundlich models. 表 2 SS@HKUST-1的吸附等温线的拟合参数
Table 2 Fitting parameters of adsorption isotherms to SS@HKUST-1
Temperature/℃ Langmuir model Freundlich model qm/
(mg·g−1)b/
(L·mg−1)R2 kF/
(mg·g−1)1/n R2 25 119.10 0.686 0.901 3.88 0.7291 0.989 35 120.00 0.335 0.987 4.69 0.7302 0.991 45 194.97 0.220 0.926 10.03 0.6453 0.997 Notes: qm—Maximum adsorption capacity; b—1/qmkL, kL—Adsorption coefficient of Langmuir; kF—Adsorption coefficient of Freundlich; 1/n—Empirical parameter varied with the degree of heterogeneity of adsorbing sites. 表 3 不同吸附剂对TC的吸附去除效果对比
Table 3 Comparison of adsorption and removal effects of different adsorbents for TC
Sample qe/(mg·g−1) Ref. SS@HKUST-1 95 This work ZIF-8/CMC 78.75 [36] CS biochar 53.191 [20] WS biochar 66.67 [20] MIL-100(Fe)/PEO 85.02 [37] Fe3O4@RGO@C18 77.56 [38] AG(Mn)-88B-C 53.07 [39] Notes: ZIF-8/CMC—Metal-organic skeleton hybrid foam ZIF-8 (zeolitic imidazolate framework-8)/CMC (carboxymethyl cellulose) with cellulose; CS biochar—Corn straw biochar; WS biochar—Wheat straw biochar; MIL-100(Fe)/PEO—Polyethylene oxide modified MIL-100(Fe); Fe3O4@RGO@C18—Fe3O4 magnetic particles were coated with a layer of RGO (reduced graphene oxide), and C18 was further modified on the surface of Fe3O4@RGO material; AG(Mn)-88B-C—MIL-88B(Fe)/sodium alginate composite aerogel. -
[1] 高艳林, 景红霞, 李龙祥, 等. 溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用[J]. 复合材料学报, 2022, 39(2): 677-684. GAO Yanlin, JING Hongxia, LI Longxiang, et al. Preparation of Bi2O3/BiOI composite photocatalytic materials by solvothermal method and application to tetracycline degradation[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 677-684(in Chinese).
[2] WANG D, JIA F, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. DOI: 10.1016/j.jcis.2018.02.067
[3] ZHANG X, LIN X, HE Y, et al. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment[J]. International Journal of Biological Macromolecules, 2019, 124: 418-428. DOI: 10.1016/j.ijbiomac.2018.11.218
[4] 于晓雯, 索全义. 畜禽粪便中四环素类抗生素的残留及危害[J]. 北方农业学报, 2018, 46(3): 83-88. YU Xiaowen, SUO Quanyi. Residues and hazards of tetracycline antibiotics in livestock manure[J]. Northern Agricultural Journal, 2018, 46(3): 83-88(in Chinese).
[5] ZHU Y, LI B, WANG Y, et al. Preparation of porous Ti/RuO2-IrO2@Pt, Ti/RuO2-TiO2@Pt and Ti/Y2O3-RuO2-TiO2@Pt anodes for efficient electrocatalytic decomposition of tetracycline[J]. Molecules, 2023, 28(5): 2189. DOI: 10.3390/molecules28052189
[6] GOPAL G, ALEX S A, CHANDRASEKARAN N, et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques[J]. RSC Advances, 2020, 10(45): 27081-27095.
[7] YIN F, LIN S, ZHOU X, et al. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes[J]. Science of the Total Environment, 2021, 759: 143520. DOI: 10.1016/j.scitotenv.2020.143520
[8] HU Z, WANG Y, WANG L, et al. Synthesis of S-type heterostructure π-COF for photocatalytic tetracycline degradation[J]. Chemical Engineering Journal, 2023, 479: 147534.
[9] BHATT P, JEON C H, KIM W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant[J]. Chemosphere, 2022, 298: 134344. DOI: 10.1016/j.chemosphere.2022.134344
[10] 张甜, 姜博, 邢奕, 等. 吸附法去除水中抗生素研究进展[J]. 环境工程, 2021, 39(3): 29-39. ZHANG Tian, JIANG Bo, XING Yi, et al. Research progress of antibiotic removal from water by adsorption[J]. Environmental Engineering, 2021, 39(3): 29-39(in Chinese).
[11] CHEN W, ZHAO B, GUO Y, et al. Effect of hydrothermal pretreatment on pyrolyzed sludge biochars for tetracycline adsorption[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106557. DOI: 10.1016/j.jece.2021.106557
[12] LUO Q, REN T, LEI Z, et al. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline[J]. Chemical Engineering Journal, 2022, 427: 131738. DOI: 10.1016/j.cej.2021.131738
[13] QIAO D, QU X, CHEN X, et al. Rational structural design of graphene oxide/W18O49 nanocomposites realizes highly efficient removal of tetracycline in water[J]. Applied Surface Science, 2023, 619: 156630. DOI: 10.1016/j.apsusc.2023.156630
[14] 陈刚. 功能化金属有机框架对抗生素的吸附研究[D]. 南昌: 华东交通大学, 2021. CHEN Gang. Adsorption study of antibiotics by functionalized metal-organic frameworks[D]. Nanchang: East China Jiaotong University, 2021(in Chinese).
[15] 王艳萍, 房得珍, 路淼, 等. MOFs基材料对金属离子吸附分离的研究进展[J]. 化工新型材料, 2023, 51(7): 68-73. WANG Yanping, FANG Dezhen, LU Miao, et al. Advances in the adsorption and separation of metal ions by MOFs-based materials[J]. New Materials for Chemical Industry, 2023, 51(7): 68-73(in Chinese).
[16] YANG Y, XUE Y, LI J, et al. Efficient removal of organic dyestuff in water contamination over a MOF-derived Co-based adsorbent[J]. Reaction Chemistry & Engineering, 2023, 8(9): 2195-2210.
[17] ZHANG M, LI Y, ZHOU X, et al. Preparation of ZIF-67/C3N4 composite material and adsorption of tetracycline hydrochloride[J]. Environmental Science and Pollution Research, 2023, 30(41): 94112-94125. DOI: 10.1007/s11356-023-28919-6
[18] MA X, XIONG Y, LIU Y, et al. When MOFs meet wood: From opportunities toward applications[J]. Chem, 2022, 8(9): 2342-2361. DOI: 10.1016/j.chempr.2022.06.016
[19] 李钲, 王国栋, 陈日耀, 等. 椰壳炭吸附去除四环素性能及机理研究[J]. 福建师范大学学报(自然科学版), 2023, 39(5): 117-123. LI Zheng, WANG Guodong, CHEN Riyao, et al. Study on the performance and mechanism of tetracycline removal by adsorption on coconut shell carbon[J]. Journal of Fujian Normal University (Natural Science Edition), 2023, 39(5): 117-123(in Chinese).
[20] 王诗尧, 王少华, 孙强, 等. 玉米和小麦秸秆生物炭对四环素吸附效果研究[J]. 环境科学与管理, 2023, 48(8): 84-87. WANG Shiyao, WANG Shaohua, SUN Qiang, et al. Study on the adsorption effect of tetracycline on corn and wheat straw biochar[J]. Environmental Science and Management, 2023, 48(8): 84-87(in Chinese).
[21] SHI Q, WANG W, ZHANG H, et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal[J]. Bioresource Technology, 2023, 383: 129213. DOI: 10.1016/j.biortech.2023.129213
[22] ZHUO S N, DAI T C, REN H Y, et al. Simultaneous adsorption of phosphate and tetracycline by calcium modified corn stover biochar: Performance and mechanism[J]. Bioresource Technology, 2022, 359: 127477. DOI: 10.1016/j.biortech.2022.127477
[23] WANG K, HAN T, CHEN X, et al. Insights into behavior and mechanism of tetracycline adsorption on virgin and soil-exposed microplastics[J]. Journal of Hazardous Materials, 2022, 440: 129770. DOI: 10.1016/j.jhazmat.2022.129770
[24] KANGRA B, JATRANA A, MAAN S, et al. Effective adsorption of chlorpyrifos pesticides by HKUST-1 metal-organic framework[J]. Journal of Chemical Sciences, 2022, 134(4): 104. DOI: 10.1007/s12039-022-02099-1
[25] OLIVEIRA H, SCACCHETTI F, BEZERRA F, et al. Comprehensive evaluation of HKUST-1 as an efficient adsorbent for textile dyes[J]. Environmental Science and Pollution Research, 2023, 30(37): 87242-87259. DOI: 10.1007/s11356-023-28455-3
[26] ZHAO L, AZHAR M R, LI X, et al. Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution[J]. Journal of Colloid and Interface Science, 2019, 542: 421-428. DOI: 10.1016/j.jcis.2019.01.117
[27] BHORIA N, BASINA G, POKHREL J, et al. Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal[J]. Journal of Hazardous Materials, 2020, 394: 122565. DOI: 10.1016/j.jhazmat.2020.122565
[28] PAN J, BAI X, LI Y, et al. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance[J]. Environmental Research, 2022, 205: 112425. DOI: 10.1016/j.envres.2021.112425
[29] LUO J, FAN C, XIAO Z, et al. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578: 123584. DOI: 10.1016/j.colsurfa.2019.123584
[30] JAGÓDKA P, MATUS K, ŁAMACZ A. On the HKUST-1/GO and HKUST-1/rGO composites: The impact of synthesis method on physicochemical properties[J]. Molecules, 2022, 27(20): 7082. DOI: 10.3390/molecules27207082
[31] ZHANG S, HAN X, CAI H, et al. Aramid nanofibers/WS2 nanosheets co-assembled aerogels for efficient and stable Pb (II) adsorption in harsh environments[J]. Chemical Engineering Journal, 2022, 450: 138268. DOI: 10.1016/j.cej.2022.138268
[32] 崔芳溪, 张蓬, 曹胜凯, 等. 不同pH溶液中四环素类抗生素与金属离子配合前后的光化学性质及毒性差异[J]. 环境科学学报, 2024, 44(2): 136-144. CUI Fangxi, ZHANG Peng, CAO Shengkai, et al. Differences in photochemical properties and toxicity of tetracycline antibiotics before and after coordination with metal ions in different pH solutions[J]. Journal of Environmental Science, 2024, 44(2): 136-144(in Chinese).
[33] AL-JABARI M. Kinetic models for adsorption on mineral particles comparison between Langmuir kinetics and mass transfer[J]. Environmental Technology & Innovation, 2016, 6: 27-37.
[34] CHEN X, HOSSAIN M F, DUAN C, et al. Isotherm models for adsorption of heavy metals from water—A review[J]. Chemosphere, 2022, 307: 135545.
[35] 李微, 郭孟雅, 刘宁. ZIF-8/CMC杂化泡沫吸附TC和Cu2+研究[J/OL]. 环境工程, 1-16[2024-12-26]. LI Wei, GUO Mengya, LIU Ning. Adsorption of TC and Cu2+ by ZIF-8/CMC hybrid foam[J/OL]. Environmental Engineering, 1-16[2024-12-26]. (in Chinese).
[36] DHYANI V, KUMAR J, BHASKAR T. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis[J]. Bioresource Technology, 2017, 245: 1122-1129. DOI: 10.1016/j.biortech.2017.08.189
[37] 李微, 宁雨阳, 刘宁, 等. PEO基MOFs杂化泡沫材料对四环素和Cu2+吸附性能[J]. 环境工程, 2023, 41(7): 76-85. LI Wei, NING Yuyang, LIU Ning, et al. Adsorption properties of PEO-based MOFs hybrid foams for tetracycline and Cu2+[J]. Environmental Engineering, 2023, 41(7): 76-85(in Chinese).
[38] 李胜, 唐祝兴, 王英嘉, 等. 纳米复合材料Fe3O4@RGO@C18对四环素的吸附研究[J]. 辽宁化工, 2023, 52(4): 469-473. DOI: 10.3969/j.issn.1004-0935.2023.04.003 LI Sheng, TANG Zhuxing, WANG Yingjia, et al. Adsorption study of tetracycline on nanocomposite Fe3O4@RGO@C18[J]. Liaoning Chemical Industry, 2023, 52(4): 469-473(in Chinese). DOI: 10.3969/j.issn.1004-0935.2023.04.003
[39] 张晓东, 赵胜昊, 姜舜桐, 等. MIL-88B(Fe)/海藻酸钠气凝胶的制备及其吸附四环素性能研究[J]. 广州化学, 2023, 48(1): 10-18. ZHANG Xiaodong, ZHAO Shenghao, JIANG Shuntong, et al. Preparation of MIL-88B(Fe)/sodium alginate aerogel and its adsorption performance of tetracycline[J]. Guangzhou Chemistry, 2023, 48(1): 10-18(in Chinese).
[40] 缪家鑫. Al掺杂UiO-66-NH2的制备及其对水体中四环素和Cu(II)的吸附去除研究[D]. 雅安: 四川农业大学, 2023. MIAO Jiaxin. Preparation of Al-doped UiO-66-NH2 and its adsorption and removal of tetracycline and Cu(II) from water[D]. Ya'an: Sichuan Agricultural University, 2023(in Chinese).
[41] 符佳佳. MOFs改性石墨烯气凝胶的制备及其对污水中四环素的去除研究[D]. 雅安: 四川农业大学, 2022. FU Jiajia. Preparation of MOFs modified graphene aerogel and its removal of tetracycline from wastewater[D]. Ya'an: Sichuan Agricultural University, 2022(in Chinese).
[42] ABBASNIA A, ZAREI A, YEGANEH M, et al. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review[J]. Inorganic Chemistry Communications, 2022, 145: 109959. DOI: 10.1016/j.inoche.2022.109959
[43] LI W, CAO J, XIONG W, et al. In-situ growing of metal-organic frameworks on three-dimensional iron network as an efficient adsorbent for antibiotics removal[J]. Chemical Engineering Journal, 2020, 392: 124844.
-
其他相关附件
-
目的
四环素(TC)是一种难降解广谱抗生素,广泛存在于畜牧业排放的污废中,排放后会对水体生态环境造成严重的污染。MOFs材料因具有孔隙发达、孔径可调、比表面积大、结构多样、活性位点丰富等优点被广泛应用于吸附领域。本文通过制备SS@HKUST-1复合材料来研究对TC的去除效果以及吸附机制。
方法吸附法因成本低、操作简单而被认为是最有前途的方法之一,本研究以高粱秸秆(SS)为基材,用NaOH溶液对SS进行处理,将处理的SS与Cu(NO)溶液混合,在真空条件下诱导SS中的钠离子与铜离子交换,最终加入有机配体(HBTC)溶液在其表面原位生长HKUST-1,制备SS@HKUST-1复合材料,用于对TC的吸附去除。通过SEM、FT-IR、XRD、XPS、TG等方法来表征复合材料;通过调节TC溶液的浓度(5 mg·L、25 mg·L、35 mg·L、55 mg·L、85 mg·L、105 mg·L)、温度(25℃、35℃、45℃)、pH值(2-11)、SS@HKUST-1的接触时间(1 min、5 min、10 min、20 min、30 min、1 h、2 h、3 h、6 h、9 h、12 h、18 h、21 h、24 h)以及HKUST-1的负载量来探究最佳吸附条件。根据吸附动力学以及吸附等温线拟合出准一级动力学模型、准二级动力学模型和Langmuir模型、Freundlich模型来判断吸附类型,并通过表征吸附前后的FT-IR、XPS来确定吸附机制。
结果从SEM图像中可以看出HKUST-1晶体呈现八面体结构,晶体尺寸约2 μm;在SS@HKUST-1复合材料中观察到HKUST-1晶体在SS表面负载,并通过EDS能谱观察到Cu元素与C、O元素均匀分布;通过分析SS@HKUST-1中XPS、FT-IR、XRD的化学结构以及衍射峰得知复合材料成功制备;TG表明所制备的SS@HKUST-1具有良好的稳定性。在吸附实验阶段,实验结果表明:1通过热重图谱可以计算出HKUST-1的负载量为31%。2当pH=7、T=25°C、HKUST-1的负载量为31%时,吸附容量达到95 mg/g。3吸附动力学模型表明,20 h达到吸附平衡,吸附过程以化学吸附为主。4吸附等温线模型表明,吸附过程为多层吸附。5SS@HKUST-1经过5次吸脱附循环后,吸附容量还可以达到67 mg/g。6在共存离子的存在下,SS@HKUST-1对TC具有选择性吸附。综上所述,静电作用、氢键作用和π-π相互作用是吸附剂去除水溶液中TC过程中的主要作用机制。
结论以高粱秸秆(SS)为基体,利用简单的原位生长方式在其表面负载HKUST-1,制备得到具有高吸附率且利于回收的SS@HKUST-1复合材料。结果表明HKUST-1均匀分布在高粱秸秆上,增加了吸附剂活性位点,二者的协同作用有利于TC的吸附,当pH=7、负载量为31%和吸附剂的添加量为1 mg吸附量达到了95 mg/g。经过5次循环实验,SS@HKUST-1仍能保持67 mg/g的吸附效果。本研究提供了一个可持续的生物质基吸附剂的制备方案。而目前生物基复合材料对污水处理仍处于实验室研究阶段,实验成分及因素单一,与工业污水和日常用水成分相差甚远。
-
四环素(TC)因抗菌效率高、价格低廉在畜牧业中得到广泛应用,然而大部分TC并未被牲畜完全吸收,会随着粪便与尿液排泄进入水体环境中,对生态环境和人体健康造成严重的威胁。其中,吸附法因成本低、操作简单而被认为是最有前途的方法之一,而金属有机框架(MOFs)材料因具有孔隙发达、孔径可调、比表面积大、结构多样、活性位点丰富等优点被广泛应用于吸附领域,但MOFs存在难以回收、成本高的问题。
本文以含有丰富极性基团(羟基、羧基)的高粱秸秆(SS)为基体,用NaOH溶液对SS进行处理,将处理的SS与Cu(NO3)2溶液混合,在真空条件下诱导SS中的钠离子与铜离子交换[18],最终加入有机配体(H3BTC)溶液在其表面原位生长HKUST-1,制备SS@HKUST-1复合材料,它不仅可以提高对四环素(TC)的吸附效果,而且也克服了MOFs的循环再利用问题。因此,所制备的SS@HKUST-1复合材料在静电作用、氢键作用和π-π相互作用下对TC的吸附容量达到95 mg·g-1,且经过5次吸脱附循环后,吸附容量仍可以达到67 mg·g-1。
(a)吸附时间对SS@HKUST-1去除TC的影响;(b) SS@HKUST-1循环次数对去除TC的影响