镀钛金刚石/铜复合材料的热导率
Thermal conductivity of Ti-coated diamond/Cu composites
-
摘要: 采用粉末冶金法在高温热压炉中制备金刚石/铜复合材料, 研究了钛镀层、烧结温度、金刚石颗粒体积分数对金刚石/铜复合材料热导率的影响。结果表明: 钛镀层能改善金刚石/铜复合材料的界面浸润性, 降低孔隙率, 提高热导率。烧结温度低于980 ℃时, 烧结驱动力不足, 致使金刚石/铜复合材料的致密度下降, 热导率降低; 烧结温度高于980 ℃时, 由于铜和金刚石的热膨胀性能相差较大, 冷却过程中铜和金刚石颗粒容易在界面处分离, 致使金刚石/铜复合材料的致密性和热导率降低。随着高热导金刚石颗粒体积分数的增加, 铜不能充分填充金刚石颗粒之间的孔隙, 降低了金刚石/铜复合材料的致密度, 致使热导率先增加后降低。Abstract: Diamond/Cu composites were fabricated by powder metallurgy in a hot-pressing furnace. The impacts of the titanium film, sintering temperature and volume fraction of diamond particles on the thermal conductivity of diamond/Cu composites were investigated. The results show that the titanium film can improve the interfacial soakage, decrease porosity and increase the thermal conductivity of diamond/Cu composites. When the sintering temperature was below 980 ℃, it can not make diamond/Cu composites get enough sintering driving force, resulting in low relative density and thermal conductivity. When the sintering temperature was above 980 ℃, it can cause the interfaces to break away because of the large difference of thermal expansion between diamond particles and copper, and can make the relative density and thermal conductivity of diamond/Cu composites decrease. The increasing of the diamond particle volume fraction can cause the copper to insufficiently fill the porosity between diamond particles, and decrease the relative density of diamond/Cu composites, which results in the increasing first and then decreasing of the thermal conductivity of diamond/Cu composites.