可调控热膨胀力学超材料设计制备与表征评测研究进展

Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials

  • 摘要: 我国太空探测事业的蓬勃发展对航天装备的可靠性提出了诸多挑战。在温度急剧变化的环境下,精确控制大型空间结构、精密探测设备和微电子封装等材料与结构的热变形成为亟待突破的瓶颈问题。因此,发展具有可调控热膨胀系数的力学超材料具有重要意义。本文针对可调控热膨胀力学超材料设计制备与表征评测等方面的研究现状与进展进行了概述,系统整理了可调控热膨胀力学超材料的设计方法,总结了热膨胀与刚度、泊松比等力学参数的协同调控策略,探讨了可调控热膨胀力学超材料拓扑优化方法,介绍了热膨胀可调力学超材料制备工艺与性能评测方法。本文还对可调控热膨胀力学超材料的发展趋势进行了展望,为其在航天装备中的深入应用提供指导与借鉴。

     

    Abstract: The vigorous development of China's space exploration industry has posed numerous challenges to the reliability of aerospace equipment. In environments with drastic temperature changes, precise control of thermal deformation in materials and structures such as large-scale space structures, precision detection equipment, and microelectronic packaging has become a bottleneck issue that urgently needs to be broken through. Therefore, it is of great significance to develop mechanical metamaterials with tailorable thermal expansion coefficients. This article provides an overview of the current status and progress of research on the design, preparation, and characterization of tailorable thermal expansion mechanical metamaterials. It systematically sorts out the design methods of tailorable thermal expansion mechanical metamaterials, summarizes the collaborative control strategies of thermal expansion, stiffness, Poisson's ratio, and other mechanical parameters, explores the topological optimization methods of tailorable thermal expansion mechanical metamaterials, and introduces the preparation techniques and performance evaluation methods of thermally tailorable mechanical metamaterials. This article also looks into the development trends of tailorable thermal expansion mechanical metamaterials, providing guidance and reference for their in-depth application in aerospace equipment.

     

/

返回文章
返回