Construction of graphene/polyurea composite with both thermal conduction and self-healing functions based on dual dynamic networks
-
摘要:
开发能够快速修复的导热材料引起了越来越多的关注。然而,材料的导热性能与自修复性能一直难以平衡,制备具有自愈性的导热聚脲复合材料具有挑战性。为了解决这一难题,本文提出利用氢键和动态亚胺键的双动态网络构筑自修复聚脲(D-PUA)柔性膜。氢键和亚胺键的动态断裂和重构不断耗散能量,使D-PUA具有良好的弹性和自修复性。实验结果表明:在短时间内(60℃、8 min) D-PUA膜上的划痕可完全修复,切断愈合72 h后拉伸强度的修复效率为84.62%。在动态聚脲基体中填充石墨烯(GNP)制备得到兼具自修复、导热性和可回收性的GNP/D-PUA复合膜。基于GNP本身的高导热性,负载量为10wt%时,复合膜的面内导热系数为2.57 W·m−1·K−1,相对于本征膜提升了571%。GNP10/D-PUA在90℃、60 min能够使划痕愈合,切断愈合72 h后拉伸强度的修复效率为83.94%。此外,由于动态键的存在复合膜经过5次热压重塑后,没有明显的机械损失,且面内热导率的回复率均在80.93%以上。
Abstract:The development of thermal conductivity materials that can be quickly repaired has attracted increasing attention. However, due to the trade-off between thermal conductivity and self-healing properties of materials, it is challenging to prepare thermal conductivity polyurea composites with self-healing properties. To solve this problem, this paper proposes to construct self-healing polyurea (D-PUA) flexible membrane by using the double dynamic network of hydrogen bonds and dynamic imine bonds. The dynamic breaking and reconstruction of hydrogen bonds and imine bonds dissipates energy continuously, which makes D-PUA have good elasticity and self-repair. The experimental results demonstrate that scratches on the D-PUA film can be completely repaired in a short time (60℃, 8 min), and the repair efficiency of tensile strength reaching 84.62% after 72 h of cutting and healing. The GNP/D-PUA composite membrane with self-healing, thermal conductivity and recyclability was prepared by incorporating graphene (GNP) as a filler. Due to the high thermal conductivity of graphene itself, the in-plane thermal conductivity of the composite film is 2.57 W·m−1·K−1 when the GNP content is 10wt%, which is 571% higher than that of the pure film. GNP10/D-PUA can also heal scratches at 90℃ for 60 min, and the repair efficiency of tensile strength after 72 h of cutting and healing is 83.94%. Additionally, due to the presence of dynamic bonds, there is no significant mechanical loss after five hot pressing remodeling of the composite film, and the repair rate of in-plane thermal conductivity is above 80.93% in all cases.
-
Keywords:
- polyurea /
- self-healing /
- hydrogen bonds /
- imine bonds /
- heat conduction /
- composite material
-
双稳态复合材料层板具有两种稳定状态,两种稳定状态之间的转换只需要一个较小激励便可获得较大变形,且无需持续的能量输入维持其稳定构型,在可变形结构和能量收集领域得到了高度关注。
Hyer[1]首次在实验中发现了非对称铺层的复合材料层板在固化后会呈现两个圆柱形稳定状态,与经典层板理论获得的马鞍形构型不同,随后建立了双稳态层板理论预报模型[2-3],开始了双稳态层板研究的先河。目前,国内外研究学者在双稳态层板的改进理论预报模型[4-6]、跳变过程分析[7-10]、驱动方法[11-14]与可变形结构应用[15-17]等方面展开了大量的研究。
在双稳态层板的基础上,发展复合材料层板的多稳态特性可以拓宽其在可变形结构中的应用范围。目前主要的实现途径分为两类,一类是分段铺层的变刚度设计,Mattioni等[18]提出了一种由对称与非对称两种不同铺层顺序组成的变刚度层板,并建立了层板的数值计算模型,验证了多稳态铺层设计。Sousa等[19]针对对称与非对称铺层区域相交处纤维不连续性所产生的应力集中问题,引入弯曲纤维来提高结构的稳定性。Arrieta等[20]提出了分段式铺层的多稳态结构,通过串联连续的复合铺层,在机翼结构中嵌入可变形单元来获得变刚度特性。Cui等[21]将多稳态层板的应用扩展至二维空间,设计了一种由9个双稳态方形单元组合而成的曲面层板,运用特定的铺层顺序减小变形单元连接处由于弯曲方向不一致而产生的几何不兼容现象。Wang等[22]引入了对称铺层的过渡单元设计来缓解各变形单元之间的几何兼容问题,提高了多稳态层板的可设计性与可变形性。Zhang等[23]受此启发,将不对称铺层层板应用于过渡单元,发现该方法不仅能减小过渡单元的面积,并且对各类变形单元都有较好的适应性。Annamalai[24]运用分布式铺层方法,对如十字形等各类不同几何外形的层板进行了多稳态结构的有限元设计,但该方法仍存在几何不兼容的问题。
第二类是使用组合叠加的方法,该方法能够优化分段铺层的几何兼容性问题,同时具有大变形与可设计性等优势。Dai等[25]采用螺栓固定的方法制备了一种多稳态晶格结构,利用刚性连接来获得相交处的几何兼容性,并且通过拼接可以使该结构具有各种变形形状。Zhang等[26]以机械连接形式将双稳态层板进行组合获得了具有多种稳态的捕蝇草结构系统。Panesar等[27]利用丝束转向技术制造了一种多稳态混合襟翼,确保了纤维在层板面内的连续性。Algmuni等[28]通过在变形单元之间连接柔性带,以提高周期性结构的稳定性。Risso等[29]提出了一种将预拉伸薄膜与条带状复合材料层板相结合的多稳态结构,通过条带状层板的调整,能够实现正多边形的多稳态结构设计。Phanendra等[30]从理论与仿真两方面对由多个矩形层板叠加铺层得到的星形多稳态层板进行了研究,但是没有考虑制备的可行性。组合叠加得到的层板,结构较复杂且需要额外的机械紧固件连接。
本文通过将两块矩形层板以交叉铺设的形式连接并采用热压罐共固化成型,期望获得多稳态层板。然而这种交叉连接的方式会引起中心胶接区域产生较大刚度,从而导致结构失去多稳态特性。因此,本文对十字形层板引入切口设计的方法削弱中心区域刚度,并获得层板的多稳态特性。通过有限元和试验手段研究了胶接面积、切口角度和层板纵横比等参数对新型十字形多稳态层板稳定构型的影响规律,并根据层板的跳变行为揭示其影响机制,为含切口十字形多稳态层板的构型调控奠定基础。
1. 含切口矩形非对称层板的双稳态特性
选用S4C9/SY-24型玻璃纤维增强环氧树脂复合材料(中航复合材料有限公司),材料属性如表1所示。对矩形层板进行切口设计,如图1所示,采用[902/02]非对称铺层,单层厚度为0.11 mm,固化温度135℃。令层板总长L=250 mm、宽度W=75 mm,中心区域边长a=25 mm、切口角度θ=45°,首先从仿真与实验两方面分析该切口设计对矩形层板稳定构型的影响情况。
表 1 S4C9/SY-24型玻璃纤维增强环氧树脂复合材料的材料属性Table 1. Material properties of S4C9/SY-24 glass fiber reinforced polymer compositeMaterial property E1/GPa E2/GPa ν12 G12/GPa G13/GPa G23/GPa α11/℃−1 α12/℃−1 α13/℃−1 Value 54.6 10.5 0.33 5.5 5.5 3.9 6.7×10−6 2.9×10−5 2.9×10−5 Notes: E1—Longitudinal modulus; E2—Transverse modulus; ν12—Poisson's ratio; G12—In-plane shear modulus; G13, G23—Inter-laminar shear modulus; α11—Longitudinal thermal expansion coefficient; α12, α13—Transverse thermal expansion coefficient. 在ABAQUS中采用隐式静态几何非线性分析方法,对矩形层板的几何中心点施加一个固定约束,并在设定的固化温度条件下获得层板的第一稳态,随后在矩形的四角点上添加方向与第一稳态弯曲方向相反的位移载荷,以获得其第二稳态。在网格划分中,主要选取SR4缩减积分壳单元,切口处填充S3单元,划分完成后得到
2673 个单元网格。仿真结果如图2(a)所示,矩形层板具有传统的双稳态变形特点,在第一稳态中,矩形层板首先沿长度方向发生变形,向90°铺层面进行弯曲(沿z轴正向),宽度方向上的纤维基本不发生改变,维持直线状态。在施加位移载荷后获得的第二稳态中,层板沿宽度方向发生反向弯曲(沿z轴反向),在长度方向上发生回弹。在图2(b)中,含切口层板的第一稳态与矩形层板具有几乎相同的弯曲变形,但是其第二稳态构型发生了不同的变形情况,层板发生了翘曲现象,最大翘曲位置出现在层板两端中点处,如图中红色标点所示。
采用热压罐成型工艺制备了普通及含切口的矩形非对称铺层层板,如图3所示。为获得层板的稳态构型及其面外最大位移值,使用示波器(美国Tektronix,MDO3024数字混合域示波器)、滑台、滑轨与激光测距仪(日本KEYENCE,IL-100)等搭建了双稳态试件稳定构型测量平台,如图4所示。将试件放置于平整表面,操纵滑台与滑轨以控制试件在水平面内的匀速平移,采用激光测距仪沿层板对称轴连续测量试件各点的面外相对位移,并通过示波器绘制构型曲线,曲线拐点所对应的值即面外最大位移。
为提高实验数据的准确性,对矩形及含切口矩形层板均制备了至少3个有效试件,实验结果通过计算均值与添加误差棒的形式表现。仿真与实验结果对比显示:矩形层板与含切口矩形层板的第一稳定构型几乎完全一致,如图5所示,切口设计对矩形层板的第一稳态影响甚微。第二稳态则出现了明显的差异,含切口矩形层板的两端出现了翘曲现象,通过对面外最大位移进行测量,得到矩形层板的面外最大位移均值仅为4.39 mm,含切口矩形层板的面外最大翘曲高度均值为11.96 mm,翘曲高度远大于纤维弯曲变形所产生的位移变化量,如图6所示。
2. 含切口十字形非对称层板的多稳态特性
2.1 十字形层板多稳态特性
将两块尺寸为250 mm×75 mm,铺层均为[902/02]的矩形层板在几何中心处交叉铺设,采用共固化成型工艺,预期获得的十字形层板具有多种稳态,且相较于传统的采用机械连接的双稳态层板组合叠加设计方案,简化了工艺步骤,降低了结构的复杂程度,拓展了多稳态层板在结构可重构领域内的实际应用价值。
然而通过实验发现,交叉铺设得到的十字形结构仅能获得第一稳态,层板跳变无法得到第二稳态。一是由于层板第二稳态以交叉形式连接时,上下胶接面的变形方向不同造成了几何不兼容问题,使共固化后胶接区域内会产生较大约束力;二是共固化引起胶接区域内的铺层厚度增大,并且铺层顺序改变为对称铺层[902/02]S,使中心区域刚度加强,二者阻碍了跳变发生,导致第二稳态失去稳定性。这一现象在仿真中表现为获得的第二稳态稳定性极差,施加的位移载荷发生微小改变就会大幅影响最终的计算结果。因此,对矩形层板进行切口设计,通过削弱中心区域的刚度减少胶接区域对第二稳态产生的影响,如图7所示。
在ABAQUS中对两个非对称矩形层板进行单独建模,在胶接区域内施加TIE约束条件连接层板模拟共固化成型,获得含切口设计的十字形多稳态层板结构,如图8所示。在图8(a)中,第一稳态发生了较大变形,随后在十字形四边的8个角点上施加垂直向下的位移载荷,层板发生跳变并获得了如图8(b)中所示的第二稳态,十字形层板的四边都发生了一定程度的翘曲现象,且翘曲高度大于矩形层板自身第二稳态发生的弯曲变形,这与含切口矩形层板第二稳态的变化情况具有相似性。此时十字形层板第二稳态的面外最大位移不再取决于宽度方向上纤维产生的弯曲变形,而是由四边翘曲高度决定。此外,单独对十字形四瓣中的其中一瓣或多瓣施加位移载荷,能够使十字形层板出现多种不同的稳定状态,将双稳态特性进一步拓展至多稳态的特性研究,如图8(c)所示。同时对含切口设计的十字形层板进行实验制备,获得的试件具有与仿真结果相同的多稳态特性,证明了通过切口设计实现十字形多稳态复合材料层板的可行性。
在多稳态层板的有限元研究中,通常使用外力加载的方式实现层板构型变换的表征,但在实际应用中,则需要通过驱动方法来实现层板多稳态构型的转变。为此,本文设计了一种基于形状记忆合金(SMA)的多稳态驱动方案,利用形状记忆合金在温度作用下形状收缩的特点实现层板多稳态构型的转变。
在ABAQUS中,由于仅利用了形状记忆合金的形状收缩特性,因此可以对仿真模型进行简化,将形状记忆合金的形状收缩等效为热膨胀材料由于温度降低引起的形状收缩,赋予材料热膨胀系数α=
0.0008 ,其余材料属性取母相奥氏体,弹性模量E=81 GPa,泊松比ν=0.3。采用片状SMA驱动器,其厚度为0.05 mm,宽度为1 mm,加载方式如图9(a)所示,驱动元件与层板之间使用TIE刚性连接,驱动元件SMA1加载于90°铺层面上,控制层板由第二稳态向第一稳态发生转变,SMA2则加载于0°铺层面上,控制层板由第一稳态向第二稳态发生转变。在网格划分中,对驱动元件进行网格加密,最终得到9893 个单元网格,如图9(b)所示。仿真结果如图10所示,对于形状记忆合金驱动的十字形多稳态层板,通过控制SMA2的形状收缩,能够实现单瓣或多瓣的跳变驱动,使层板从第一稳态向第二稳态发生转变;同样,通过控制SMA1,也可以使层板由第二稳态向第一稳态发生单瓣或多瓣的跳回现象。通过对形状记忆合金的调控,实现了对十字形多稳态层板结构变形的主动控制。同时,对比形状记忆合金加载前后十字形层板多种稳态的稳定构型与面外位移,可以发现,由于采用的片状SMA驱动器尺寸很小,因此驱动元件的加载对十字形层板的构型影响甚微。
此外,研究发现,外力施加与形状记忆合金驱动下的十字形多稳态层板,单瓣片均具有独立变形能力,即对于未施加位移扰动的瓣片,其面外位移保持相对稳定,相较于第一稳态没有显著变化。而对于已经施加了位移扰动并完成了跳变的瓣片,其最大翘曲程度又与第二稳态具有的翘曲现象相当。
这一多稳态变形特点取决于胶接区域的大刚度特性。胶接区域的较大刚度导致了当一部分瓣片受到载荷作用时,其变形不会对其他未受载荷的瓣片产生显著影响,这种变形独立性体现了含切口十字形层板在设计上的优势,尤其是在需要精确控制局部变形的应用场景中。
2.2 胶接面积影响
对含切口十字形多稳态层板进行参数影响研究。保持层板尺寸L=250 mm、W=75 mm不变,当中心胶接区域为正方形(θ=45°)时,就能够在不改变几何外形为十字形的前提下,通过改变胶接区域边长a,研究不同胶接面积对十字型多稳态层板稳定构型的影响规律。
令胶接区域边长a在10~60 mm范围内逐渐增大,单次增幅∆a为5 mm,不同胶接面积与层板面外最大位移之间的变化关系曲线,如图11所示。由图可知,第一稳态面外位移大小随胶接面积的增大而减小,且呈线性关系,这是由于胶接面积的增大使层板参与弯曲变形的长度缩小导致的。而第二稳态中面外最大位移的变化情况较复杂,如图11(b)所示,首先当a在10~40 mm的范围内增大时,面外最大位移减小,随后a继续在40~60 mm区间内增大时,面外最大位移则出现上升趋势。
依次选择参数a=10、20、30、40、50 mm,研究不同胶接面积对层板跳变行为的影响情况,如图12所示。将仿真中层板固定端支反力,等效为十字形层板跳变所需的外部加载,获得了位移-载荷曲线图。从图中能够观察到层板的跳变行为:载荷首先随层板面外位移的增大线性增加,层板发生弹性形变;当载荷上升至峰值时,层板开始跳变,曲线的最大值即跳变载荷大小;随后载荷迅速降低,载荷的减小量随胶接面积的增大而增大。当a=30 mm时,维持层板变形所需的载荷大小降为0。这意味着对于a=30 mm的含切口十字形层板,当施加的外部载荷达到结构的跳变载荷后无需继续加载,即可使层板完成向第二稳态的转变。对于a=40 mm、50 mm的十字形层板,则表现出负刚度行为,载荷出现了回升,对应着图11(b)中a=40 mm处曲线出现拐点的现象,第二稳态的面外最大位移变化趋势发生改变。
试验验证了不同胶接面积对十字形层板稳定构型的影响规律,如表2所示,分别制备了边长a=10、25、50 mm的3种十字形层板(红色框选表示实际的胶接区域),层板的两种稳态均具有良好的稳定性,且与仿真中两种稳定构型的变形情况吻合,第一稳态发生较大变形,第二稳态产生了四边翘曲现象,翘曲高度决定了层板的面外最大位移。同时,结构的稳定性还体现在,重复变换不同稳态多次后,结构仍然可以使用,层板的稳定构型与多稳态特性几乎不受到影响。
表 2 不同胶接面积下十字形多稳态层板的两种稳定构型Table 2. Two stable configurations of cruciform multistable laminates with different co-curing areaCo-curing area/(mm×mm) Configuration I Configuration II 10×10 25×25 50×50 采用激光测距仪对层板的稳定构型与面外最大位移进行测量,如图13、图14所示,实验结果与有限元结果之间吻合良好,最大误差不超过5%。对比图13中所示的层板第一稳态构型情况,可以发现:虽然层板第一稳态的面外最大位移会随着胶接面积的改变发生线性变化,但层板在胶接区域外发生的弯曲变形曲率基本一致,胶接面积的改变对构型曲率产生较小影响。
2.3 切口角度影响
为了获得在相同胶接面积下不同切口角度对十字形多稳态层板稳定构型的影响情况,保持胶接区域边长a=10 mm不变,改变切口角度θ。为了保证结构的稳定性,结构参数需要满足W≤L1及防止过度胶接切口角度需小于45°。
令切口角度分别为θ=35°、37.5°、40°、42.5°和45°,切口角度对面外最大位移的影响情况如图15所示。可知:随着切口角度θ的改变,第一稳态的面外最大位移基本不受影响,改变量仅为0.38 mm,百分比变化仅为0.8%;第二稳态的面外最大位移则随θ的减小而增大,总增量为2.32 mm,百分比变化为21.6%。
切口角度θ的减小,使胶接区域周边的纤维面积缩减。十字形层板第二稳态的面外最大位移受到中心区域内作用力影响,作用力主要取决于胶接区域内阻碍跳变发生的约束力及层板内部激发双稳态变形的热残余应力。在胶接面积不发生改变的条件下,引起层板四边翘曲的约束力大小保持不变,但切口角度与纤维面积的缩减减小了参与矩形层板第二稳态弯曲变形的热应力大小,在二者的相互作用下,导致翘曲现象更加明显,第二稳态面外最大位移增大。
2.4 纵横比影响
改变矩形层板纵横比,由于矩形宽度的改变会带动切口角度发生变化,因此保持宽度不变,令层板长度逐渐增大(L=220、230、240、250、260、270、280 mm),参数对面外最大位移的影响如图16所示。可知:随着长度L增大,第一稳态与第二稳态的面外最大位移均随之增大,并且L对第一稳态构型的影响远大于第二稳态,第一稳态的面外最大位移总增量为19.96 mm,百分比变化为46.7%;而第二稳态总增量仅为2.83 mm,百分比变化为26.4%。
十字形层板两种稳态的构型变化规律与矩形层板基本相同,长度L与面外最大位移呈线性关系,这是由于纵横比L/W的增大,使层板内部沿长度方向上的纤维长度增加,结构发生了更大的弯曲变形。
3. 结 论
(1)通过仿真与试验手段研究了普通及含切口矩形双稳态层板的稳定构型,获得了二者的稳定构型与变形规律。结果表明切口设计对层板第二稳定构型影响较大,含切口的矩形层板第二稳定状态两边产生了翘曲现象,且翘曲高度大于纤维自身所产生的弯曲变形量,面外最大位移变为由翘曲高度决定。
(2)通过将两块矩形双稳态层板交叉铺设共固化成型并引入切口设计,提出了一种新的十字形多稳态复合材料层板,通过有限元和试验验证了切口设计的可行性。
(3)胶接面积与十字形层板第一稳定构型面外最大位移呈线性减小关系;第二稳定构型面外最大位移随胶接面积的增加呈现出先减小后增大的趋势。
(4)研究了相同胶接面积下不同切口角度与纵横比对十字形层板稳定构型的影响规律,切口角度主要影响十字形层板的第二稳态,而纵横比则对第一稳态起重要作用。
-
图 1 (a) 自修复聚脲(D-PUA)的合成路线图;(b) D-PUA薄膜的制备过程示意图;(c) D-PUA双动态网络结构示意图(包含氢键和动态亚胺键)
IPDI—Isophorone diisocyanate; D-400, D-2000—Polyetheramine
Figure 1. (a) Synthetic route of self-healing polyurea (D-PUA); (b) Schematic demonstration of the preparation process of the D-PUA films; (c) D-PUA dual dynamic network structure diagram, including hydrogen bonds and dynamic imine bonds
图 4 (a) 聚脲(PUA)和D-PUA划痕自修复的光学显微镜图像;(b) 染色和未染色D-PUA样品在60℃下修复72 h的数码照片;(c) D-PUA切断后在60℃下不同愈合时间的应力-应变曲线;(d) D-PUA切断后在60℃下不同愈合时间的韧性及修复效率;(e) D-PUA自修复机制图
Figure 4. (a) Optical microscope images of polyurea (PUA) and D-PUA scratch self-healing; (b) Digital photos of dyed and undyed D-PUA samples repaired at 60℃ for 72 h; (c) Stress-strain curves of D-PUA after cutting at different healing time at 60℃; (d) Toughness and repair efficiency of D-PUA after cutting at different healing time at 60℃; (e) Self-healing mechanism diagram of D-PUA
图 5 (a) 具有不同质量分数石墨烯(GNP)复合材料的应力-应变曲线;(b) GNP10/D-PUA划痕自修复的光学显微镜图像;(c) GNP10/D-PUA切断后在90℃下不同愈合时间的应力-应变曲线;(d) GNP10/D-PUA切断后在90℃下不同愈合时间的韧性及修复效率
Figure 5. (a) Stress-strain curves of composites with different mass fractions graphene (GNP); (b) Optical microscope images of GNP10/D-PUA scratch self-healing; (c) Stress-strain curves of GNP10/D-PUA after cutting at different healing time at 90℃; (d) Toughness and repair efficiency of GNP10/D-PUA after cutting at different healing time at 90℃
图 9 (a) 不同填料含量的GNP/D-PUA平面内导热系数;(b) GNP/D-PUA 的传热机制图;(c) 放置在加热板边缘的GNP/D-PUA复合材料的热红外图像; GNP/D-PUA在散热器的LED间通电前后的红外热像图(d)和不同时间点对应的表面温度(e)
Figure 9. (a) In-plane thermal conductivity of GNP/D-PUA with different stuffing contents; (b) Heat transfer mechanism diagram of GNP/D-PUA composite; (c) Thermal infrared images of GNP/D-PUA composites placed on the edge of a heating plate; Infrared thermal images of GNP/D-PUA before and after power is applied between the LED of the radiator (d) and corresponding surface temperature at different time points (e)
表 1 石墨烯(GNP)/D-PUA的样品命名
Table 1 Sample naming of graphene (GNP)/D-PUA
Sample Mass of GNP/mg GNP content/wt% GNP2.5/D-PUA 87.4 2.5 GNP5/D-PUA 179.3 5 GNP7.5/D-PUA 276.2 7.5 GNP10/D-PUA 378.5 10 GNP12.5/D-PUA 486.7 12.5 -
[1] ZHAO L W, SHI X R, YIN Y, et al. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities[J]. Composites Science and Technology, 2020, 186: 107919. DOI: 10.1016/j.compscitech.2019.107919
[2] HUYNH T P, SONAR P, HAICK H. Advanced materials for use in soft self-healing devices[J]. Advanced Materials, 2017, 29(19): 1604973. DOI: 10.1002/adma.201604973
[3] 叶娟, 祖兆基, 林子谦, 等. 本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络[J]. 高分子学报, 2023, 54(7): 1028-1054. YE Juan, ZU Zhaoji, LIN Ziqian, et al. Intrinsic self-healing polysiloxane materials: From single dynamic crosslinked network to multiple dynamic crosslinked networks[J]. Acta Polymerica Sinica, 2023, 54(7): 1028-1054(in Chinese).
[4] ZHAO J, ZHANG Z M, WANG C Y, et al. Synergistic dual dynamic bonds in covalent adaptable networks[J]. CCS Chemistry, 2024, 6: 41-56. DOI: 10.31635/ccschem.023.202303045
[5] XIE J, YANG M, LIANG J, et al. Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network[J]. Journal of Materials Chemistry A, 2021, 9(29): 15975-15984. DOI: 10.1039/D1TA03512F
[6] LI H L, XU F C, WANG J L, et al. Self-healing fluorinated poly (urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators[J]. Nano Energy, 2023, 108: 108243. DOI: 10.1016/j.nanoen.2023.108243
[7] WANG D, XU J H, CHEN J Y, et al. Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications[J]. Advanced Functional Materials, 2020, 30(3): 1907109. DOI: 10.1002/adfm.201907109
[8] COOPER C B, ROOST S E, MICHALEK L, et al. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers[J]. Science, 2023, 380(6648): 935-941. DOI: 10.1126/science.adh0619
[9] MING X Q, DU J Y, ZHANG C G, et al. All-solid-state self-healing ionic conductors enabled by ion-dipole interactions within fluorinated poly (ionic liquid) copolymers[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 41140-41148.
[10] LIU Y, ZHANG Y, CHEN T, et al. A stable and self-healing thermochromic polymer coating for all weather thermal regulation[J]. Advanced Functional Materials, 2023, 33(49): 2307240. DOI: 10.1002/adfm.202307240
[11] XIONG H, WU H T, ZHANG J Q, et al. Healable and recyclable polyurethane with natural-rubber-like resilience via π-type tweezer structure stabilizing dynamical hard domains[J]. Macromolecules, 2023, 56(21): 8581-8591. DOI: 10.1021/acs.macromol.3c01770
[12] ZHAO D, ZHOU X Z, LI Q R, et al. Unprecedented toughness in transparent, luminescent, self-healing polymers enabled via hierarchical rigid domain design[J]. Materials Horizons, 2022, 9(10): 2626-2632. DOI: 10.1039/D2MH00820C
[13] CHEN L, XU J H, ZHU M M, et al. Self-healing polymers through hydrogen-bond cross-linking: Synthesis and electronic applications[J]. Materials Horizons, 2023, 10(10): 4000-4032. DOI: 10.1039/D3MH00236E
[14] ZHANG R, HUANG W B, LYU P, et al. Polyurea for blast and impact protection: A review[J]. Polymers, 2022, 14(13): 2670. DOI: 10.3390/polym14132670
[15] LIU W, HE Y, LENG J. Humidity-responsive shape memory polyurea with a high energy output based on reversible cross-linked networks[J]. ACS Applied Materials & Interfaces, 2022, 15: 2163-2171.
[16] WAN B Q, XIAO M Y, DONG X D, et al. Dynamic covalent adaptable polyimide hybrid dielectric films with superior recyclability[J]. Advanced Materials, 2023, 36(52): 2304175.
[17] YU P, WANG H, LI T, et al. Mechanically robust, recyclable, and self-healing polyimine networks[J]. Advanced Science, 2023, 10(19): 2300958. DOI: 10.1002/advs.202300958
[18] WAN B, YANG X, DONG X, et al. Dynamic sustainable polyimide film combining hardness with softness via a "mimosa-like" bionic strategy[J]. Advanced Materials, 2023, 35(2): 2207451. DOI: 10.1002/adma.202207451
[19] DING S J, ZHU G C, ZHAO S, et al. Simultaneously optimized healing efficiency and mechanical strength in polymer composites reinforced by ultrahigh loading fillers based on interfacial energy and dynamic disulfide bonds[J]. Polymer, 2022, 251: 124711. DOI: 10.1016/j.polymer.2022.124711
[20] WANG D, LIU D, XU J, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons, 2022, 9(2): 640-652. DOI: 10.1039/D1MH01746B
[21] ZAREPOUR A, AHMADI S, RABIEE N, et al. Self-healing MXene and graphene-based composites: Properties and applications[J]. Nano-Micro Letters, 2023, 15(1): 100. DOI: 10.1007/s40820-023-01074-w
[22] YU H, CHEN C, SUN J, et al. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity[J]. Nano-Micro Letters, 2022, 14(1): 135. DOI: 10.1007/s40820-022-00882-w
[23] NIU W, LI Z, LIANG F, et al. Ultrastable, superrobust, and recyclable supramolecular polymer networks[J]. Angewandte Chemie-International Edition, 2024, 136(10): e202318434.
[24] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009. Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
[25] WU P X, CHENG H Y, WANG Y, et al. New kind of thermoplastic polyurea elastomers synthesized from CO2 and with self-healing properties[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12677-12685.
[26] ZHANG Z, QIAN L, CHENG J, et al. Room-temperature self-healing polyurea with high puncture and impact resistances[J]. Chemistry of Materials, 2023, 35(4): 1806-1817. DOI: 10.1021/acs.chemmater.2c03782
[27] CHAO A, NEGULESCU I, ZHANG D. Dynamic covalent polymer networks based on degenerative imine bond exchange: Tuning the malleability and self-healing properties by solvent[J]. Macromolecules, 2016, 49(17): 6277-6284. DOI: 10.1021/acs.macromol.6b01443
[28] ZHANG S, QIN B, XU J F, et al. Multi-recyclable shape memory supramolecular polyurea with long cycle life and superior stability[J]. ACS Materials Letters, 2021, 3(4): 331-336. DOI: 10.1021/acsmaterialslett.1c00053
[29] 邹佳利, 于云鹏, 闫雨晴, 等. 木质素增强可自修复聚脲弹性体的制备与性能[J]. 复合材料学报, 2023, 40(10): 5666-5677. ZOU Jiali, YU Yunpeng, YAN Yuqing, et al. Fabrication and properties of lignin-reinforced self-healing polyurea elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5666-5677(in Chinese).
[30] YU J, WANG K, FAN C C, et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion[J]. Advanced Materials, 2021, 33(16): 2008395. DOI: 10.1002/adma.202008395
[31] TU J, XU H, TIAN J Q, et al. A novel, high strength, ultra-fast room temperature self-healing elastomers via structural functional region optimization strategy[J]. Chemical Engineering Journal, 2023, 465: 142887. DOI: 10.1016/j.cej.2023.142887
[32] LUO J C, ZHAO X, JU H, et al. Highly recyclable and tough elastic vitrimers from a defined polydimethylsiloxane network[J]. Angewandte Chemie-International Edition, 2023, 62(47): e202310989.
[33] XU J H, LI Y K, LIU T, et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure[J]. Advanced Materials, 2023, 35(26): 2300937. DOI: 10.1002/adma.202300937
[34] RAO S P, FAN J F, ZHOU Y, et al. High damping, soft and reprocessable thermal interface materials inspired by the microstructure of skin tissue[J]. Composites Science and Technology, 2024, 247: 110428. DOI: 10.1016/j.compscitech.2023.110428
[35] CHEN M, YOU W, WANG J, et al. Enhancing the toughness and strength of polymers using mechanically interlocked hydrogen bonds[J]. Journal of the American Chemical Society, 2023, 146(1): 1109-1121.
[36] WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562-583. DOI: 10.1038/s41578-020-0202-4
[37] WANG C Y, GENG X, CHEN J, et al. Multiple H-bonding cross-linked supramolecular solid-solid phase change materials for thermal energy storage and management[J]. Advanced Materials, 2024, 36(11): 2309723.
[38] WANG Y Y, HUANG X, ZHANG X X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure[J]. Nature Communications, 2021, 12(1): 1291. DOI: 10.1038/s41467-021-21577-7
[39] GUO H, HAN Y, ZHAO W, et al. Universally autonomous self-healing elastomer with high stretchability[J]. Nature Communications, 2020, 11(1): 2037. DOI: 10.1038/s41467-020-15949-8
[40] WU Y C M, CHYR G, PARK H, et al. Stretchable, recyclable thermosets via photopolymerization and 3D printing of hemiacetal ester-based resins[J]. Chemical Science, 2023, 14(44): 12535-12540. DOI: 10.1039/D3SC03623E
[41] 陈灿, 俞慧涛, 冯奕钰, 等. 兼具导热和自修复功能的聚合物复合材料[J]. 高分子学报, 2021, 52(3): 272-280. CHEN Can, YU Huitao, FENG Yiyu, et al. Polymer composite material with both thermal conduction and self-healing functions[J]. Acta Polymerica Sinica, 2021, 52(3): 272-280(in Chinese).
[42] LI X, WU B, LYU Y, et al. Effect of regulating the interfacial structure of multiple non-covalent bonding on improving thermal management capability[J]. Journal of Materials Chemistry A, 2024, 12(2): 864-875. DOI: 10.1039/D3TA05936G
[43] YUE D W, WANG H Q, TAO H Q, et al. A fast and room-temperature self-healing thermal conductive polymer composite[J]. Chinese Journal of Polymer Science, 2021, 39(10): 1328-1336. DOI: 10.1007/s10118-021-2620-1
-
期刊类型引用(2)
1. 郭小杰,杜丽勇. 尿素掺杂CH_3NH_3PbI_3薄膜及其钙钛矿太阳能电池性能研究. 功能材料. 2024(01): 1086-1091 . 百度学术
2. 张晨亮. 溴化锂材料浓度对太阳能电池蓄能力影响的计算机动态分析. 信息记录材料. 2023(02): 158-160 . 百度学术
其他类型引用(5)
-
目的
开发能够快速修复且可重塑再加工的导热材料引起了越来越多的关注。但加入硬质的导热填料会限制分子链段运动,降低愈合效率,从而导致自修复性能和导热功能难以平衡,制备具有自愈性的导热聚脲复合材料具有挑战性。为了解决这一难题,本文利用氢键和动态亚胺键的双动态网络以及石墨烯(GNP)的高导热性来构筑导热自修复石墨烯/聚脲复合材料。
方法从聚脲基体动态网络结构的设计出发,引入导热填料,研究制备兼具自修复性能的聚脲基导热复合材料。首先,利用异佛尔酮二异氰酸酯和聚醚胺的亲核加成反应合成氨基封端的大分子聚脲,再加入对苯二甲醛,经席夫碱反应在聚脲分子链中引入可逆非共价的氢键和可逆共价亚胺键构建双动态网络(D-PUA)。通过调节两种聚醚胺的摩尔比调控氢键密度,实现材料自修复性能与机械性能的平衡。再采用电化学剥离的GNP为导热填料,经超声和机械共混制备GNP/D-PUA柔性复合材料。探究了GNP的加入对D-PUA自修复性能、导热性能和可回收性能的影响。
结果(1)氢键和亚胺键的动态断裂和重构不断耗散能量,使D-PUA具有良好的回弹性和自修复性能。将D-PUA膜拉伸至一定形变,撤去应力并静置20 min后,可以恢复到原始形状,其拉伸循环曲线与原曲线重合。由于分子链间氢键和亚胺键的断裂和重组实现了宏观上的损伤修复,在短时间内(60 ℃、8 min)D-PUA膜上的划痕可完全修复。而PUA(无亚胺键)的划痕愈合在同一温度下需要更久的时间(15 min),表明氢键和亚胺键对自修复的协同作用优于单一的氢键。此外,D-PUA被完全切断后,在60 ℃愈合72 h,拉伸强度和断裂韧性的修复效率分别84.62和80.36%。(2)基于GNP本身的高导热性,复合材料的面内热导率随填料负载量的增加而增加,当GNP负载量为10 wt%时,复合膜的面内导热系数为2.57 W·m·K,相对于本征膜提升了571%。引入GNP后,GNP/D-PUA复合膜仍有自修复性能,且随着GNP负载量的增加,复合材料的划痕修复速率逐渐降低。这是由于GNP的加入阻碍了基体的分子链运动和动态键的重组,使得复合材料的自修复性能有不同程度的下降。GNP/D-PUA在90 ℃,60 min能够使划痕愈合,完全切断愈合72 h后拉伸强度和断裂韧性的修复效率分别为83.94%和61.07%。(3)得益于多重氢键和可逆共价亚胺键的高度动态性,D-PUA和GNP/D-PUA在温和的条件下皆可激活实现热再加工和循环再利用。复合膜经5次热压重塑后,没有明显的机械损失,且面内热导率的回复率均在80.93%以上,实现了高效回收和可持续发展。
结论本文制备的GNP/D-PUA复合材料兼具导热、自修复和重塑再加工性能,为电子元件的多功能化和多元化应用提供了一种设计方案。有望应用于柔性电子器件如可穿戴设备、导热皮肤、柔性传感器、柔性电路板和智能医疗等领域。
-
兼具可自愈、可回收性能的柔性导热材料,引起了越来越多的关注。然而,由于加入硬质的导热填料会限制分子链段运动,降低愈合效率,从而导致自修复性能和导热功能难以平衡,严重限制其实际应用。
1、本文将多重氢键与动态亚胺键相结合协同构筑具有高柔韧性与自愈性的双动态网络聚脲(D-PUA)。基于氢键和亚胺键的动态断裂和重构不断耗散能量,使D-PUA具有良好的弹性和韧性,且可以使划痕快速(60 ℃,8 min)愈合。
2、在动态聚脲基体中引入石墨烯纳米片(GNP)构建导热通路,制备导热复合材料(GNP/D-PUA)。由于分级氢键和亚胺键连接的动态交联超分子网络和多重协同性,GNP负载量为10 wt%时仍具备良好的修复能力。
基于GNP本身的高导热性以及导热通路的构建,减少声子散射、保证了热流的高效传递。 GNP10/D-PUA的面内导热系数达到2.57 W·m-1·K-1,相对于本征膜提升了571%。
3、得益于可逆非共价键的氢键和可逆共价亚胺键的高度动态性,D-PUA和GNP/ D-PUA在温和的条件下皆可激活实现热再加工和循环再利用,符合可持续发展的需求。