聚四氟乙烯滤料高温裂解和动态力学性能

Pyrolysis and dynamic mechanical properties of polytetrafluoroethylene filter media

  • 摘要: 随着袋式除尘技术的广泛应用,滤袋失效和回收利用等问题愈发引人关注。为了解聚四氟乙烯(PTFE)滤料是否会在使用时产生失效问题和焚烧处理时产生有害气体成分,本文分别采用动态力学分析-固体分析仪和热重-红外-气相色谱质谱联用仪,探究PTFE滤料在高温裂解的气体成分,以及在模拟使用温度下的动态力学性能和蠕变性能,为PTFE滤料的合理使用和后处理提供科学依据。结果表明:PTFE在空气氛围中裂解会产生碳酰氟、四氟乙烯、六氟丙烯等有害气体。与PTFE基布增强和芳纶基布增强芳纶针刺滤料相比,随着温度升高,PTFE基布增强PTFE针刺滤料的拉伸强力显著降低,而芳纶基布增强芳纶针刺滤料则无明显变化。在蠕变性能方面,PTFE滤料抗蠕变性能差,PTFE基布增强芳纶针刺滤料在低应力水平下有良好的抗蠕变性能,而芳纶基布增强芳纶针刺滤料则在高低应力水平下皆有较好的抗蠕变性能。

     

    Abstract: More and more attention is being paid to the filtration failure and the following disposal issues of filter media with its wide application of baghouse dust removal technology. In this paper, TG-IR-GC/MS and DMA are used to investigate the pyrolysis and dynamic mechanical properties of polytetrafluoroethylene (PTFE) fiber needle punched filter media in comparison with aramid fiber filter media, with the aim to provide the guidance of rational application and disposal of PTFE filter media. The results showed that PTFE decomposed in air, producing harmful gases such as carbonyl fluoride, tetrafluoroethylene, and hexafluoropropylene. Compared to PTFE and aramid fiber woven fabric reinforced aramid fiber filter media, the tensile strength of PTFE woven fabric reinforced PTFE fiber needle punched filter media was decreased significantly with the increase of heating temperature. In addition, PTFE filter media exhibited poor creep resistance while PTFE fiber woven fabric reinforced aramid fiber filter media had good creep resistance at low stress level, and aramid woven fabric reinforced aramid fiber filter media exhibited good creep resistance even at higher stress level.

     

/

返回文章
返回