Abstract:
More and more attention is being paid to the filtration failure and the following disposal issues of filter media with its wide application of baghouse dust removal technology. In this paper, TG-IR-GC/MS and DMA are used to investigate the pyrolysis and dynamic mechanical properties of polytetrafluoroethylene (PTFE) fiber needle punched filter media in comparison with aramid fiber filter media, with the aim to provide the guidance of rational application and disposal of PTFE filter media. The results showed that PTFE decomposed in air, producing harmful gases such as carbonyl fluoride, tetrafluoroethylene, and hexafluoropropylene. Compared to PTFE and aramid fiber woven fabric reinforced aramid fiber filter media, the tensile strength of PTFE woven fabric reinforced PTFE fiber needle punched filter media was decreased significantly with the increase of heating temperature. In addition, PTFE filter media exhibited poor creep resistance while PTFE fiber woven fabric reinforced aramid fiber filter media had good creep resistance at low stress level, and aramid woven fabric reinforced aramid fiber filter media exhibited good creep resistance even at higher stress level.