Loading [MathJax]/jax/output/SVG/jax.js

阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的性能

林黎明, 王正洲

林黎明, 王正洲. 阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的性能[J]. 复合材料学报, 2025, 42(2): 737-746. DOI: 10.13801/j.cnki.fhclxb.20240422.002
引用本文: 林黎明, 王正洲. 阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的性能[J]. 复合材料学报, 2025, 42(2): 737-746. DOI: 10.13801/j.cnki.fhclxb.20240422.002
LIN Liming, WANG Zhengzhou. Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 737-746. DOI: 10.13801/j.cnki.fhclxb.20240422.002
Citation: LIN Liming, WANG Zhengzhou. Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 737-746. DOI: 10.13801/j.cnki.fhclxb.20240422.002

阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的性能

基金项目: 国家自然科学基金(21975185)
详细信息
    通讯作者:

    王正洲,博士,研究员,博士生导师,研究方向为聚合物阻燃材料 E-mail: zwang@tongji.edu.cn

  • 中图分类号: TB332

Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin

Funds: National Natural Science Foundation of China (21975185)
  • 摘要:

    氮化硼(BN)因表面呈惰性与环氧树脂(EP)相容性较差,而且其阻燃效率也不高。通过将9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物(DMZ)与Fe(NO3)3反应得到的配位化合物(FeD)在BN表面进行原位生长,制备出阻燃功能化氮化硼(FeD/BN)。将FeD/BN加入到EP中,制备导热阻燃的EP复合材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)测试和锥形量热测试对复合材料的阻燃性能进行了研究,发现含有15wt%的FeD/BN的EP复合材料(15(Fe/B)/EP)的LOI为33.2%,达到了UL-94的V-0级;该复合材料峰值热释放速率(pHRR)、总热释放量(THR)和总烟释放量(TSR)相较于纯EP分别降低28.2%、18.9%和30.1%。导热系数测试表明,15(Fe/B)/EP的导热系数相较于纯EP的导热系数提高了235%。此外,与纯EP相比,该复合材料的拉伸强度与冲击强度都有所提高。

     

    Abstract:

    Boron nitride (BN) exhibited poor compatibility with epoxy resin (EP) due to its inert surface, and its flame-retardant efficiency in EP was low. In this study, a coordination compound (FeD) was synthesized by a reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DMZ) and Fe(NO3)3. FeD was grown in situ on the surface of BN to prepare a flame-retardant functionalized boron nitride hybrid (FeD/BN). FeD/BN was incorporated into EP to prepare thermally conductive and flame-retardant EP composites. Limiting oxygen index (LOI) and vertical burning (UL-94) tests indicate that EP composite with 15wt%FeD/BN achieves a V-0 rating in the UL-94 test with a LOI value of of 33.2%. Cone calorimetry test results show that the peak heat release rate, total heat release and total smoke release of the composite decrease by 28.2%, 18.9% and 30.1%, respectively compared to those of pure EP. Thermal conductivity of 15(Fe/B)/EP is 235% higher than that of pure EP. Tensile and impact strengths of 15(Fe-B)/EP are enhanced compared with those of pure EP.

     

  • 防火技术的进步对工业工程和建筑行业的发展具有重要意义[1-4]。在火灾下,火源温度可以迅速传递到整个钢结构,钢材的强度和刚度随着温度上升而降低,在600℃以上可能导致结构失稳和倒塌,造成巨大经济损失和人员伤亡[5-7]。膨胀型钢结构防火涂料作为一种膨胀阻燃、装饰性好的防火材料,在遇到火源时迅速膨胀形成焦炭层,对基材提供有效防护[8]。目前广泛采用的膨胀阻燃体系(IFR)是酸源(如聚磷酸铵(APP))、碳源(如季戊四醇(PER))、气源(如三聚氰胺(MEL))的组合物[9]。然而,该膨胀型防火涂料主要由有机树脂和阻燃剂构成,一般在800℃以上难以长时间稳定存在,遇火逐渐分解,失去防护效果。研究表明,添加无机填料可以填补涂层空隙,有利于致密膨胀炭层的形成,抑制热量传递,增强涂层的耐火极限和隔热性能[10]

    粉煤灰(FA)是火电厂燃煤后产生的废弃物,每年全球大约生产500万吨,而仅有16%被回收利用,这导致大量FA被浪费,且带来处理问题[11]。在“双碳”政策的引领下,资源的再利用和循环利用被重视,FA在防火阻燃材料中的应用越来越广泛。如Batistella等[12]考察了FA在聚乳酸阻燃体系中的增效作用,结果显示其可取代25%的聚磷酸铵并降低了聚乳酸阻燃体系的燃烧热值。Kim等[11]制备了碳化处理的FA,通过气化火焰实验得出,有效增强有机硅复合材料的防火性能和力学性能。Zhou等[13]制备了焦磷酸哌嗪/氢氧化镁/粉煤灰空心球复合材料,并将其掺杂于聚氨酯泡沫中,燃烧等级测试结果显示其有效提升了聚氨酯泡沫的阻燃性能。然而,其在防火阻燃体系(特别是膨胀型防火涂料)中的分散性、相容性是影响防火涂层隔热性能的关键因素。

    壳聚糖(CS)作为一种来源于甲壳类动物外壳的天然高分子,在生物医药、食品添加剂、涂层材料等领域得到广泛应用,这归因于其优异的生物相容性和独特的化学修饰功能。Yu等[14]通过制备CS/聚磷酸三聚氰胺/钼磷铵共混的多功能阻燃涂料,CS的添加在涂料中成功形成密集交联的网络结构,提高了聚合物涂层的相容性。常娟等[15]通过CS改性硫铁矿(FeS)制备了FeS/CS基气凝胶复合材料,结果显示CS对FeS分散性有良好的促进作用。范佳璇等[16]制备了CS/植酸静电纺涂层阻燃棉织物,结果显示CS可以增强涂层的阻燃性能,主要归因于在燃烧过程中CS可以参与成炭和阻燃。王娜等[17]进一步总结了CS基阻燃剂的制备及其在防火涂层中应用,结果表明相比纯环氧防火涂层,CS基阻燃剂防火涂料在500℃下残炭量提高47%,氧指数值可达25.5%。

    本实验以FA和CS为原料,制备了FA-CS复合阻燃填料,并将其引入水性膨胀型防火涂料体系中,以强化涂层的耐火极限和隔热性能。通过FTIR和SEM表征复合阻燃填料的成分组成和微观形貌,表明FA-CS复合阻燃填料的成功制备。SEM观察了涂层膨胀层表面形貌,结果显示相比其他涂层,FA-CS/水性膨胀体系(WIS)涂层具有更致密光滑的表面,通过大板实验可以看出,FA-CS复合阻燃填料有效提升了膨胀涂层的耐火性能。资源再利用为水性膨胀型防火涂料的原料来源和性能提升提供了新思路。

    冰醋酸,AR,采购于国药集团化学试剂有限公司;壳聚糖(CS),采购于上海麦克林生化科技有限公司;粉煤灰(FA)由湖南兰驰粉体输送设备有限公司提供;多聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)购于天津奥洛奇化工科技有限公司;水性丙烯酸乳液(WA)由武汉市瑞元诚新材料有限公司提供。

    取冰醋酸3.45 mL,配制0.3 mol/L的冰醋酸溶液200 mL于烧杯,将2 g CS添加于烧杯中,在2000 r/min下搅拌4 h,使CS充分溶解。再将4 g FA添加于持续搅拌的溶液中,将搅拌速率调整为2500 r/min,混合搅拌2 h,对混合液进行离心,并用去离子水洗涤3次,在60℃的烘箱(DZ-1BC1V,泰斯特)中持续干燥24 h,获得FA-CS复合阻燃填料。

    取40 g水性丙烯酸乳液于烧杯中,将52 g膨胀阻燃体系(APP∶PER∶MEL质量比为2∶1∶1)添加于烧杯中,在1000 r/min的速率下分散搅拌40 min,得到水性膨胀体系(WIS)。然后将制备的FA-CS复合阻燃填料5 g分散在混合液中,在3000 r/min搅拌20 min,在搅拌过程中补充3 g水,得到较均一的水性膨胀型防火涂料。将涂料采用喷涂的方式涂装于Q235基材表面,每次涂装厚度为600 μm,固化1 d,反复涂装,至涂层厚度(3.0±0.1) mm,室温下养护7 d,得到FA-CS改性的水性膨胀型防火涂层(FA-CS/WIS)。为了进行比较,采用类似的技术制备了FA和CS基复合涂层,分别命为FA/WIS和CS/WIS。水性膨胀型防火涂层的制备路线如图1所示,组成比例见表1

    图  1  粉煤灰(FA)-壳聚糖(CS)复合阻燃填料的制备示意图
    IFR—Intumescent flame retardant system; WA—Waterborne emulsions; HAc—Acetic acid
    Figure  1.  Schematic diagram of the preparation of fly ash (FA)-chitosan (CS) composite flame-retardant fillers
    表  1  水性膨胀型防火涂层的组成比例(wt%)
    Table  1.  Composition ratio of water-based intumescent flame-retardant coatings (wt%)
    Coating WA APP PER MEL FA CS FA-CS H2O
    WIS 45 26 13 13 3
    FA/WIS 40 26 13 13 5 3
    CS/WIS 40 26 13 13 5 3
    FA-CS/WIS 40 26 13 13 5 3
    Notes: APP—Ammonium polyphosphate; PER—Pentaerythritol; MEL—Melamine; WIS—Waterborne intumescent system.
    下载: 导出CSV 
    | 显示表格

    采用傅里叶变换红外光谱仪(FTIR,Nicolet iS10,Thermofisher Scienticfic)对FA-CS复合阻燃填料进行官能团表征,测试的波长范围为500~4000 cm−1。通过电子扫描显微镜(SEM,JSM-6510LV,JEOL)观察了FA-CS复合阻燃填料的表面形貌并分析其元素组成。运用X射线衍射仪(XRD,SmartLab SE,Rigaku)对FA、CS和FA-CS的组织结构进行了对比分析,其扫描速率20°/min,2θ的测试范围为5°~90°。采用SEM进一步观察水性膨胀型防火涂层的表面状态和微观形貌,观察防火涂层膨胀后的微观组织和致密程度。采用高精度多通道热电偶测温仪(TA612C,TASI)对基材的背面温度进行了记录。

    大板实验是将涂层涂敷于钢板观察涂层燃烧过程中涂层形态变化和背面温度变化研究涂层材料耐火极限和隔热性能的重要方法。使用煤气喷枪为火源,燃烧过程中喷嘴与涂层之间的距离固定为80 mm,使外焰燃烧涂层,外焰温度维持在(1000±50)℃。测量钢板的厚度为d0,涂覆水性膨胀型防火涂层后的干燥涂层样板厚度为d1,燃烧60 min后涂层膨胀后的涂层样板厚度为d2,结果精确到0.1 mm。通过记录背面温度的实时数据,绘制背面温度随时间的变化曲线。涂层的膨胀倍率由下式计算:

    Em=d2d0d1d0×100% (1)

    采用FTIR对FA、CS和FA-CS复合阻燃填料的官能团进行了表征,如图2所示。798 cm−1处的吸收峰归结于FA中Si—O键的拉伸振动,684 cm−1处的吸收峰对应于Si—O键的弯曲振动,520 cm−1处的吸收峰是由Al—O弯曲振动引起的[18]。CS在3433214014261083 cm−1处的特征峰分别归因于O—H拉伸振动、C—H拉伸振动、N—H弯曲振动和C—O拉伸振动[19]。FA-CS的特征峰与FA和CS完全对应,这表明FA-CS复合材料的成功制备。

    采用XRD对FA、CS和FA-CS复合阻燃填料的结构进行了表征,如图3所示。FA的晶体结构与石英和莫来石晶相的标准PDF卡一致(JCPDS 46-1045为二氧化硅,JCPDS 15-0776为硅铝氧化物),其中20.86°、26.63°、35.18°、40.60°和60.27°分别对应二氧化硅的(100)、(101)、(110)、(111)和(121)晶面的衍射峰,其主要晶相为石英相;16.64°、26.63°和49.95°分别对应硅酸铝莫来石的衍射峰[20]。CS的唯一衍射峰出现在2θ=18.98°处,对应于CS的特征峰,归因于分子间相互作用而排列的聚合物链为无定型结构[21]。在FA-CS复合材料中,可以清晰地观察到FA的强烈衍射峰和CS的微弱衍射峰(图中阴影部位标记),这表明两者良好复合及晶体和非晶体衍射峰的强度存在差异性。

    图  2  FA、CS、FA-CS复合阻燃填料的FTIR图谱
    Figure  2.  FTIR spectra of FA, CS, FA-CS composite flame-retardant fillers
    图  3  FA、CS、FA-CS复合阻燃填料的XRD图谱
    Figure  3.  XRD patterns of FA, CS, FA-CS composite flame-retardant fillers

    采用SEM对FA、CS和FA-CS复合阻燃填料的微观形貌和元素组成表征分析,如图4所示。图4(a)图4(b)显示了FA的微观形貌,可以看出,FA呈现球状,微球直径大约5 μm,图4(c)显示了其元素组成,主要有O、Si、Al等元素,C元素几乎没有。图4(d)~4(f)显示了CS的微观状态和元素组成,CS主要表现为无规则形状,所含元素主要为C和O。图4(g)~4(i)对FA-CS复合阻燃填料进行了观察,可以看出,FA微球表面被CS附着,这有利于改善FA在乳液中的相容性。EDS元素分析可以看出复合填料包含了FA和CS的元素,证明复合材料的成功制备。

    图  4  ((a)~(c)) FA的SEM图像及其放大图和Mapping图;((d)~(f)) CS的SEM图像及其放大图和EDS图;((g)~(i)) FA-CS复合阻燃填料的SEM图像及其放大图和EDS图
    Figure  4.  ((a)-(c)) SEM images of FA, its magnification and mapping; ((d)-(f)) SEM images of CS, its magnification and EDS; ((g)-(i)) SEM images of FA-CS composite flame-retardant filler, its magnification and EDS

    采用SEM对固化的WIS、FA/WIS、CS/WIS、FA-CS/WIS涂层进行了观察,如图5所示。从图5(a)图5(b)可以看出,WIS涂层的表面较光滑,但存在明显的裂纹和孔隙,这为火焰冲刷提供了通道,不利于阻隔热量的侵入和渗透。FA/WIS涂层表面粗糙不平(图5(c)图5(d)),存在凹陷和裂纹,这难以阻止热量向涂层内部传递,抑制基材温度的上升。如图5(e)图5(f)所示,CS/WIS涂层相比FA/WIS的表面更加光滑,这主要归因于CS具有优异的相容性,改善了树脂与阻燃填料间的界面,减少了涂层裂纹的产生,但是无法避免涂层中仍然存在许多孔隙,这主要归因于CS通常以聚合物链存在,难以提高填补空隙能力[22]。相比之下,FA-CS/WIS表面则未出现明显的裂纹和孔隙(图5(g)图5(h)),这归结于CS对FA相容性的提升,改善了FA在WIS中的分散性和成膜性能,同时FA填补了涂层中的孔隙,获得表面致密光滑的防火涂层,可有效抑制和阻隔涂层热量、火焰的冲刷,为延长涂层的耐火极限和提升阻燃能力提供了良好的保障。

    图  5  涂层的燃烧前SEM图像及其放大图:((a), (b)) WIS;((c), (d)) FA/WIS;((e), (f)) CS/WIS;((g), (h)) FA-CS/WIS
    Figure  5.  SEM images of the coatings before combustion and their magnifications: ((a), (b)) WIS; ((c), (d)) FA/WIS; ((e), (f)) CS/WIS; ((g), (h)) FA-CS/WIS

    通过大板实验对各水性膨胀型防火涂层的耐火性能进行考察,WIS、FA/WIS、CS/WIS、FA-CS/WIS燃烧前后的截面、表面照片如图6所示。从图6(a)可以观察出,WIS涂层燃烧前的样品厚度为6.0 mm,其中钢板为3.0 mm,涂层表面较光滑,涂层在煤气喷枪火焰中燃烧35 min的过程中,涂层快速膨胀,膨胀高度为28.0 mm,涂层出现了大量裂纹,这为火焰和热量快速渗入基材提供了路径通道。如图6(b)所示,FA/WIS涂层在火焰中燃烧60 min,涂层样片的厚度由6.2 mm膨胀到了27.5 mm,这表明FA的添加使涂层的膨胀性能有所降低,但FA作为具有优异耐温性能的无机填料,可以延长涂层的耐火时间,初始涂层WIS只能耐火35 min,而FA/WIS的耐温时间提升到了60 min。但是从表面状态可以观察出,FA的存在让涂层在后期产生了裂纹。CS/WIS涂层则表现出完全不同的现象,CS/WIS涂层在燃烧过程中从6.1 mm膨胀到45.3 mm,其膨胀倍率约为13.6倍,表现出极高的膨胀性能(图6(c))。这归因于添加的CS中大量的羟基基团参与了成炭反应,为涂层提供了更高的膨胀倍率,这为涂层良好的阻隔热量提供了基础。然而,CS作为高分子,在火焰的长期灼烧下,燃烧60 min后,涂层中间出现了空洞,这表明膨胀层逐渐炭化分解[23],膨胀层在变薄,这导致基材将进一步受到火焰和热量的渗透。相比之下,将CS和FA复合的阻燃填料添加到阻燃体系中得到的FA-CS/WIS涂层(图6(d))则表现出更好的耐温性能和较优的膨胀性能,其膨胀高度为33.5 mm (膨胀倍率为10.2倍),膨胀层的表面状态也更加完整致密,这归因于两者的协同作用。

    图  6  各涂层燃烧前后的截面和表面照片:(a) WIS;(b) FA/WIS;(c) CS/WIS;(d) FA-CS/WIS
    Figure  6.  Cross-sectional and surface photographs before and after combustion of each coating: (a) WIS; (b) FA/WIS; (c) CS/WIS; (d) FA-CS/WIS

    此外,在燃烧过程中,各涂层钢板的背面温度变化如图7所示。对于涂覆WIS涂层的钢板,其背面温度普遍高于其他涂层,在燃烧25 min后其背面温度迅速上升,在35 min时涂层的背面温度上升至496℃,难以抵抗火焰的长期烧蚀,这与涂层的膨胀体系不耐温而快速分解有关系。FA/WIS涂层的耐温性能优于WIS涂层,这主要归因于FA微球对火焰和热量有一定的阻隔作用,但是涂层的膨胀性能有所抑制。从图中可以看出,相比于WIS和FA/WIS涂层,CS/WIS涂层在前期具有优异的耐温性能,这归因于CS参与了成炭反应,促进了炭化层的生成,增加了涂层的膨胀倍率。但随着时间的延长,膨胀层逐渐分解,涂层的耐温性能下降,在燃烧40 min后,背面温度快速上升。相比之下,FA-CS/WIS涂层则表现出更加优异的耐温性能,在燃烧60 min后,涂层的背面温度仅为279℃,低于其他涂层,这归结于FA的隔热性能和CS对涂层膨胀性能的提升。

    图  7  不同涂层钢板的背面温度随时间的变化曲线
    Figure  7.  Curves of backside temperature with time for different coated steels

    不同涂层燃烧后膨胀层的SEM图像如图8所示。从图8(a)图8(b)中可以看出,WIS涂层的膨胀层出现了大面积的孔洞,这主要归结于WIS涂层由丙烯酸乳液和三元阻燃体系组成,在高温下快速分解消失,形成了让火焰和热量快速侵入通道,难以抑制火焰的长时间渗透。图8(c)图8(d)为FA/WIS涂层的膨胀层微观形貌,可以观察到,膨胀层内部有大量的FA微球存在,这些微球为基材和涂层提供了良好的热量阻隔作用,抑制了部分火焰和热量对涂层的灼烧,但是仍然产生了大量的裂纹,这归结于涂层中不耐燃易分解的成分在火焰下的消失[24-25]。CS/WIS涂层在长期燃烧后,涂层也出现了孔洞(图8(e)图8(f)),但相比WIS涂层的孔洞有所改善,这归结于CS的添加增强了涂层膨胀层的成炭反应,抑制了部分热量传递于内部涂层和基材,为延长耐火极限提供可能。相比之下,FA-CS/WIS涂层在FA和CS的协同作用下,膨胀层具有较致密的表面,未出现大面积的孔洞和裂纹(图8(g)图8(h)),这主要由于FA为涂层和基材提供了优异的隔热性能,CS增加了涂层的膨胀性能,从而大大减缓了热量向涂层内部渗透作用,改善膨胀层致密性,延长了涂层在火焰下的耐火能力。

    图  8  涂层燃烧后的SEM图像及其放大图:((a), (b)) WIS;((c), (d)) FA/WIS;((e), (f)) CS/WIS;((g), (h)) FA-CS/WIS
    Figure  8.  SEM images of the coatings after combustion and their magnifications: ((a), (b)) WIS; ((c), (d)) FA/WIS; ((e), (f)) CS/WIS; ((g), (h)) FA-CS/WIS

    FA-CS/WIS涂层的防火隔热机制如图9所示。在燃烧初期,FA-CS复合填料填补了涂层网络结构中的孔隙,减少了外部热量向涂层内部的扩散路径,对火焰和热量的侵入有良好的阻隔作用[26]。CS在涂层中增加了FA在WIS中的相容性,为其形成致密的涂层表面奠定了基础。随着温度上升,体系中的聚磷酸铵、三聚氰胺和季戊四醇组成的三元阻燃体系开始发生酸化、气化等反应,逐渐形成膨胀层。CS与季戊四醇和环糊精一样具有多羟基结构,在燃烧过程中促进焦炭的形成[27]。因此,CS在高温火焰下燃烧脱水分解并逐步炭化,参与膨胀层的成炭反应,促进了膨胀倍率的提升[28]。此外,具有优异耐热性能的FA则在燃烧后的残炭中首先作为耐温材料,抑制涂层在火焰下的分解和破坏,其次作为微球可以填补膨胀层的孔隙,形成了高质量的膨胀炭化层,阻隔热量和火焰的渗透,提升膨胀层的热稳定性和耐火时间。总之,FA和CS的协同作用,有效地提高了WIS涂层的隔热和保温效果,使FA-CS/WIS涂层对基材耐火能力的提升明显优于其他涂层。

    图  9  FA-CS/WIS涂层的防火隔热机制
    Figure  9.  Mechanism of fire protection and thermal insulation of FA-CS/WIS coatings

    (1)以粉煤灰(FA)、壳聚糖(CS)等废弃物为原料制备了FA-CS复合材料,并将其添加于水性丙烯酸乳液中,辅以膨胀阻燃体系,发展了一种水性膨胀型防火涂料,涂层的膨胀倍率高(10.2倍),其涂覆的钢板在燃烧 60 min 时背面温度为279℃。

    (2)通过SEM对涂层及膨胀层表面形貌进行观察,发现水性膨胀体系(WIS)、FA/WIS、CS/WIS涂层表面存在大量孔隙和裂纹。而FA-CS/WIS涂层具有更致密光滑的表面,有效阻隔热量传递和火焰冲刷,提升了涂层耐火性能。

    (3) FA-CS/WIS涂层具有优异的隔热耐火性能,这主要归结于:CS改善了FA在WIS中的分散性和成膜性能,同时FA填补了涂层中的孔隙;FA具有良好的隔热性能,为涂层提供了物理屏障;在火焰冲刷涂层过程中,CS参与成炭反应,提升了涂层的膨胀倍率,增强了涂层的膨胀和防火性能。

  • 图  1   9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物与Fe(NO3)3反应得到配位化合物(FeD)的制备过程示意图

    DOPO—9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; VMZ—1-vinylimidazole; DMZ—9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide vinyl imidazole derivatives

    Figure  1.   Schematic illustration of preparation of iron ion coordination compound of 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide vinyl imidazole derivatives (FeD)

    图  2   FeD/BN的制备过程示意图

    Figure  2.   Schematic illustration of preparation of FeD/BN

    图  3   BN、FeD和FeD/BN的FTIR图谱 (a)和 XRD图谱(b)

    Figure  3.   FTIR spectra (a) and XRD patterns (b) of BN, FeD and FeD/BN

    图  4   BN (a)和 FeD/BN (b)的SEM图像;FeD/BN的EDS图像:(c) B;(d) C;(e) N;(f) O;(g) P;(h) Fe

    Figure  4.   SEM images of BN (a) and FeD/BN (b); EDS images of FeD/BN: (c) B; (d) C; (e) N; (f) O; (g) P; (h) Fe

    图  5   EP复合材料的极限氧指数(LOI)和垂直燃烧(UL-94)等级

    NR—Natural rubber

    Figure  5.   Limiting oxygen index (LOI) and vertical burning (UL-94) results of EP composites

    图  6   EP复合材料的燃烧行为:(a) 热释放速率(HRR)曲线;(b) 总热释放量(THR)曲线;(c) 总产烟量(TSP)曲线

    Figure  6.   Combustion behavior of EP composites: (a) Heat release rate (HRR) curves; (b) Total heat release (THR) curves; (c) Total smoke production (TSP) curves

    图  7   EP复合材料经锥形量热(CCT)后的残炭照片

    Figure  7.   Images of residues of EP composites after cone calorimeter (CCT) tests

    图  8   EP复合材料残炭的SEM图像((a)~(e));15(Fe/B)/EP复合材料的EDS图像((f)~(k))

    Figure  8.   SEM images of residues of EP composites ((a)-(e)); EDS images of residuals of 15(Fe/B)/EP ((f)-(k))

    图  9   EP复合材料的TG曲线(N2氛围)

    Figure  9.   TG curves of EP composites (N2 atmosphere)

    图  10   EP复合材料残炭的拉曼光谱

    ID/IG—Intensity ratio of peak D and peak G

    Figure  10.   Raman spectra of residues of EP composites

    图  11   EP复合材料的导热系数

    Figure  11.   Coefficients of thermal conductivity of EP composites

    图  12   EP复合材料的力学性能:(a) 拉伸强度和断裂伸长率;(b) 冲击强度

    Figure  12.   Mechanical properties of EP composites: (a) Tensile strength and elongation at break; (b) Impact strength

    图  13   EP复合材料的SEM图像

    Figure  13.   SEM images of EP composites

    表  1   环氧树脂(EP)复合材料的配方

    Table  1   Formulations of epoxy resin (EP) composites

    Sample EP/wt% DDM/wt% FeD/BN/wt% BN/wt% FeD/wt%
    EP 80 20 0 0 0
    5(Fe/B)/EP 76 19 5 0 0
    10(Fe/B)/EP 72 18 10 0 0
    15(Fe/B)/EP 68 17 15 0 0
    15(Fe-B)/EP 68 17 0 11.38 3.62
    15BN/EP 68 17 0 15 0
    15FeD/EP 68 17 0 0 15
    Notes: FeD/BN—FeD functionalized BN; n(Fe/B)/EP—Epoxy composite with nwt%FeD/BN; 15(Fe-B)/EP—Epoxy composite with 15wt% FeD and BN compound (The compound ratio is calculated according to the load ratio); 15FeD/EP—Epoxy composite with 15wt%FeD; DDM—4, 4-diaminodiphenylmethane.
    下载: 导出CSV

    表  2   EP及其复合材料的锥形量热仪(CCT)测试结果

    Table  2   Cone calorimeter (CCT) test results of EP composites

    Sample TTI/s pHRR/(kW·m−2) THR/(MJ·m−2) TSR/(m2·s−1)
    EP 85 1026 111 2770
    15BN/EP 125 932 105 2143
    15(Fe/B)/EP 109 737 90 1937
    15(Fe-B)/EP 102 873 99 2146
    15FeD/EP 99 606 91 1655
    Notes: TTI—Time to ignition; pHRR—Peak of heat release rate; TSR—Total smoke rate.
    下载: 导出CSV

    表  3   本工作和其他类似导热阻燃EP复合材料的性能比较[17-18, 29]

    Table  3   Comparisons of this work and other typical thermal conductive and flame retardant EP composites[17-18, 29]

    Filler Size Loading TC/(W·m−1·K−1) LOI/% pHRR Tensile strength Ref.
    h-BN 1-2 μm 2wt% 0.23 34.3 −44.7% [29]
    h-BN 3-5 μm 12.1vol% 1.04 −68.9% [18]
    h-BN 1-2 μm 16wt% 0.69 −58.2% +31.3% [17]
    h-BN 5 μm 11.3wt% 0.47 33.2 −28.2% +4.4% This work
    Notes: TC—Thermal conductivity; LOI—Limiting oxygen index.
    下载: 导出CSV
  • [1]

    TIAN S. Preparation and properties of nano-SiO2/grapheme flame retardant epoxy resin composites[J]. Journal of Functional Materials, 2020, 51(6): 6052-6056, 6095.

    [2]

    XING W, CHEN L, ZHOU M, et al. Preparation of boron nitride/graphene composite thermal conductive filler and study on flame retardant, thermal conductivity and insulation properties of epoxy resin composites[J]. Scientia Sinica Chimica, 2023, 53(2): 207-216.

    [3]

    WANG Y D, MA L, YUAN J, et al. A green flame retardant by elaborate designing towards multifunctional fire-safety epoxy resin composites[J]. Reactive & Functional Polymers, 2023, 191: 137823.

    [4]

    LU J Y, WANG B B, JIA P F, et al. Designing advanced OD-2D hierarchical structure for epoxy resin to accomplish exceeding thermal management and safety[J]. Chemical Engineering Journal, 2022, 427: 132046. DOI: 10.1016/j.cej.2021.132046

    [5]

    JIANG G Y, XIAO Y L, QIAN Z Y, et al. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites[J]. Chemical Engineering Journal, 2023, 451: 137823. DOI: 10.1016/j.cej.2022.137823

    [6]

    XIAO Y L, MU X W, CHEN S Q, et al. Biomass-derived polyphosphazene toward simultaneously enhancing the flame retardancy and mechanical properties of epoxy resins[J]. Chemosphere, 2023, 311: 137058. DOI: 10.1016/j.chemosphere.2022.137058

    [7]

    ZHANG W J, ZHOU M T, KAN Y C, et al. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units[J]. Polymer Degradation and Stability, 2023, 208: 110236. DOI: 10.1016/j.polymdegradstab.2022.110236

    [8]

    JIA Y, SHI R, HU X, et al. Research progress on thermal conductive epoxy resin composites[J]. Engineering Plastics Application, 2020, 48(4): 139-143, 149.

    [9]

    YANG J, YANG Y, JIA Y, et al. The development in preparation and application of thermal conductive composites[J]. Polymer Bulletin, 2021, 8: 1-8.

    [10]

    NIU W, ZHANG X, QIAO J, et al. Optimization formula design of thermal conductive insulating silicone rubber filler[J]. New Chemical Materials, 2020, 48(1): 115-119.

    [11]

    MIAO Z C, WU Z X, WANG T, et al. In situ synthesis of boron nitride "nanonoodles" based epoxy nanocomposites with enhanced thermal and dielectric properties[J]. Polymer Composites, 2022, 43(8): 5344-5352. DOI: 10.1002/pc.26836

    [12]

    LI Z, LIRA S, ZHANG L, et al. Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin[J]. Polymer Degradation and Stability, 2018, 157: 119-130. DOI: 10.1016/j.polymdegradstab.2018.10.005

    [13]

    WANG C, HAO Z, SHEN Z, et al. Research progress of filler-filled polymer-based thermal conductive materials[J]. Polymer Bulletin, 2022, 1: 18-23.

    [14]

    ZHANG Y R, TUO R, YANG W, et al. Improved thermal and electrical properties of epoxy resin composites by dopamine and silane coupling agent modified hexagonal BN[J]. Polymer Composites, 2020, 41(11): 4727-4739. DOI: 10.1002/pc.25746

    [15]

    HUA Y F, LIU J, ZHANG J Y, et al. A compound with boron and phosphorus towards epoxy resin with excellent flame retardancy, smoke suppression, transparency, and dielectric properties[J]. Chemical Engineering Journal, 2024, 483: 149212.

    [16]

    HE Y F, CUI X Y, LIU Z S, et al. A new approach to prepare flame retardant epoxy resin with excellent transmittance, mechanical properties, and anti-aging performance by the incorporation of DOPO derivative[J]. Polymer Degradation and Stability, 2023, 218: 110579.

    [17]

    BAO Q R, HE R, LIU Y, et al. Multifunctional boron nitride nanosheets cured epoxy resins with highly thermal conductivity and enhanced flame retardancy for thermal management applications[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107309. DOI: 10.1016/j.compositesa.2022.107309

    [18]

    LI X W, FENG Y Z, CHEN C, et al. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(41): 20500-20512. DOI: 10.1039/C8TA08008A

    [19]

    LIU D Y, CUI Y H, ZHANG T L, et al. Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8[J]. Polymer Degradation and Stability, 2021, 194: 109749. DOI: 10.1016/j.polymdegradstab.2021.109749

    [20]

    KOROGLU L, AYAS E, AY N. BNNS formation through surface modification of hBN nanopowders with a silane coupling agent[J]. Journal of Dispersion Science and Technology, 2023, 45(8): 2222806.

    [21]

    CHEN Q, WANG Z Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106738. DOI: 10.1016/j.compositesa.2021.106738

    [22]

    CAI W, FENG X M, WANG B B, et al. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant[J]. Chemical Engineering Journal, 2017, 316: 514-524. DOI: 10.1016/j.cej.2017.01.017

    [23]

    OU M Y, LIAN R C, LI R J, et al. A high-efficient DOPO-based flame retardant as a Co-curing agent for simultaneously enhancing the fire safety and mechanical properties of epoxy resin[J]. Macromolecular Rapid Communications, 2023, 44(18): 202300262.

    [24]

    LI L, LI X W, WAN S B, et al. High-efficiency flame-retardant epoxy resin using phosphoraphenanthrene/thiazole-based co-curing agent[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(19): 10115-10124. DOI: 10.1007/s10973-023-12363-2

    [25]

    LI J W, ZHENG P L, LIU H Y, et al. An organometallic flame retardant containing P/N/S-Cu2+ for epoxy resins with reduced fire hazard and smoke toxicity[J]. ACS Omega, 2023, 8(18): 16080-16093. DOI: 10.1021/acsomega.2c08226

    [26]

    WANG W, LIU Y, WANG Q. Adjustable boron nitride segregated framework in epoxy resin for high performance thermal management and flame retardant applications[J]. Composites Science and Technology, 2023, 242: 110161. DOI: 10.1016/j.compscitech.2023.110161

    [27]

    JIAO L M, WANG Y, WU Z H, et al. Effect of gamma and neutron irradiation on properties of boron nitride/epoxy resin composites[J]. Polymer Degradation and Stability, 2021, 190: 109643. DOI: 10.1016/j.polymdegradstab.2021.109643

    [28]

    LI G H, MA Y J, XU H Y, et al. Hydroxylated hexagonal boron nitride nanoplatelets enhance the mechanical and tribological properties of epoxy-based composite coatings[J]. Progress in Organic Coatings, 2022, 165: 106731. DOI: 10.1016/j.porgcoat.2022.106731

    [29]

    FENG T T, CUI J H, OU M Y, et al. 0D-2D nanohybrids based on binary transitional metal oxide decorated boron nitride enabled epoxy resin efficient flame retardant coupled with enhanced thermal conductivity at ultra-low additions[J]. Composites Communications, 2023, 41: 101649.

  • 其他相关附件

  • 目的 

    随着电子设备及微电子器件逐渐向智能化、集成化和微型化方向发展,其工作频率和热流密度急剧增加,导致大量的热量在设备上积聚,因此对在电子电气领域应用的材料在导热性能、电绝缘性和阻燃性能提出了更高要求。环氧树脂(EP)的导热性能和阻燃性能均较差,为拓宽EP在电子电气领域的应用,在很多应用场合亟需开发高导热、阻燃的EP复合材料。氮化硼(BN)作为绝缘性好、且具有较高导热系数的陶瓷类导热填料,在热管理领域得到了广泛应用,但是其惰性以及与EP基体相容性较差限制了它的应用,另外其阻燃效率也不高。本文通过将一种有机膦酸金属盐阻燃剂负载在BN表面,实现了其阻燃功能化,以期制备导热、阻燃的EP/BN复合材料。

    方法 

    利用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)具有反应活性的P-H键与1-乙烯基咪唑的C=C键进行加成,得到有机膦酸DMZ,进而与Fe(NO)反应得到一种有机膦酸铁阻燃剂(FeD)。通过原位生长的方式将其沉积到BN表面,得到阻燃功能化的BN杂化物(FeD/BN),将FeD/BN加入到EP基体中,制得导热、阻燃的FeD/BN/EP复合材料。利用傅里叶红外(FT-IR)光谱、X射线衍射(XRD)图谱、场发射扫描电子显微镜(SEM)和能谱仪(EDS)对FeD/BN进行了表征。利用垂直燃烧(UL-94)测试、极限氧指数(LOI)测试、利用锥形量热(CCT)测试、导热性能测试和力学性能测试对FeD/BN/EP复合材料综合性能进行评估,并对该复合材料相关的阻燃和导热机理进行了探讨。

    结果 

    从研究结果可以看出:① FT-IR结果反映FeD/BN的表面检测出FeD,同时没有新的化学键生成,表明FeD与BN之间为非共价键左右,初步验证FeD的负载。② XRD结果表明FeD的负载不会影响BN的晶格结构。③ SEM和EDS结果进一步验证了FeD的成功负载。④ FeD/BN/EP复合材料性能研究表明,含有15 wt%的FeD/BN的EP复合材料(15(Fe/B)/EP)的LOI为33.2%,达到了UL-94的V-0级,其峰值热释放速率(pHRR)、总热释放量(THR)和总烟释放量(TSR)相较于纯EP分别降低28.2%、18.9%和30.1%,具有显著的阻燃效果;15(Fe/B)/EP的导热系数相较于纯EP的导热系数提高了235%;此外,与纯EP相比,该复合材料的拉伸强度与冲击强度都有所提高。⑤ 15(Fe/B)/EP在燃烧时能够形成很好的炭层。

    结论 

    本文将一种有机膦酸铁阻燃剂(FeD)负载到BN表面,制备阻燃功能化的BN杂化物(FeD/BN),将其应用于EP,制备出导热、阻燃FeD/BN/EP复合材料。相较于EP,含有15 wt%的FeD/BN的EP复合材料(15(Fe/B)/EP)在具有较好的阻燃性能和导热性能的同时,其力学性能也有所提高。FeD/BN在EP中气相和凝聚相均起到一定的阻燃作用。与其它类似工作的导热阻燃EP复合材料相比,本文所合成的FeD/BN因与EP之间具有较好的相容性,在相对较少的添加量下其EP复合材料的阻燃性能、导热性能和力学性能都得到了显著的改善。

  • 随着电子设备及微电子器件逐渐向智能化、集成化和微型化方向发展,其工作频率和热流密度急剧增加,导致大量的热量在设备上积聚,因此,在电子电气领域应用的材料需要同时具有优异的导热性能、电绝缘性和阻燃性能。环氧树脂导热和阻燃性能均表现较差,极大限制了其在电子电气领域的应用。

    本文通过将9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物(DMZ)与Fe(NO3)3反应得到的配位化合物(FeD)在BN表面进行原位生长,制备出阻燃功能化氮化硼(FeD/BN),将FeD/BN加入到EP中,制备导热阻燃的EP复合材料。在惰性的BN表面上负载FeD不仅改善了BN与EP的相容性,同时也改善其在EP中的导热与阻燃性能。在15% FeD/BN的添加量下,EP复合材料的LOI达到33.2%, UL-94达到V-0级,峰值热释放速率(pHRR)、总热释放量(THR)和总烟释放量(TSR)相较于纯EP分别降低28.2%、18.9%和30.1%,阻燃性能得到显著改善;该EP复合材料的导热系数相较于纯EP的导热系数提高了235%。

    EP复合材料的(a)HRR曲线,(b)THR曲线

图(13)  /  表(3)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  135
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-07
  • 录用日期:  2024-04-13
  • 网络出版日期:  2024-05-28
  • 发布日期:  2024-04-22
  • 刊出日期:  2024-11-26

目录

/

返回文章
返回