Abstract:
Carbon fiber toughened ceramic matrix composites inherit the excellent mechanical properties of carbon fibers and the high oxidation and corrosion resistance of ceramics, become the most promising candidate thermal protection materials for hypersonic vehicles. The high-temperature oxidation mechanisms and damage mechanical behaviors of carbon fiber toughened ceramic matrix composites in coupled service environments are important topics in the study of design, property characteristic and evaluation of thermal protection material. This provides a detailed discussion and summary of the research and analysis methods employed to characterize the oxidation damage of C/SiC and C/ZrB
2-SiC composites in three aspects: High-temperature oxidation mechanisms, coupled failure experiment, and high-temperature oxidation model. The limitations and applicability of various research methods are analyzed and evaluated. In addition, the development trend of investigation of oxidation damage in carbon fiber toughened ceramic matrix composites is provided. It provides guidance for the study of thermal/mechanical response analysis and performance evaluation of carbon fiber toughened ceramic matrix composites in the thermal/mechanical/oxygen environment.