Ballistic performance of Kevlar fiber UD sheets composite materials
-
摘要:
为探究Kevlar纤维单向(UD)片材复合材料防弹性能,以水性丙烯酸树脂/水性聚氨酯为基体,采用湿法缠绕技术与热压工艺制备了Kevlar纤维UD片材复合材料。探究共混树脂配比、树脂含量、热压工艺等因素对Kevlar纤维UD片材复合材料防弹性能的影响规律,揭示材料的防弹机制,以及对靶板结构进行优化。结果表明:随着水性丙烯酸树脂在共混树脂中比重的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当水性聚氨酯与水性丙烯酸树脂质量比为1∶2时,防弹性能较好。随着树脂含量的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当树脂含量为19wt%时,防弹性能较好。Kevlar纤维UD片材复合材料防弹性能随着热压压力、热压温度、热压时间的增大呈先增大后减小的趋势。Kevlar纤维UD片材复合材料的防弹机制主要分成3个阶段:第一阶段主要以纤维剪切破坏的方式吸收能量;第二阶段主要以纤维拉伸断裂的方式吸收能量为主;第三阶段主要以纤维拉伸变形的方式吸收能量。8UD/4UD/8UD结构的Kevlar纤维UD片材复合材料防弹性能较好。
Abstract:In order to investigate the bulletproof property of Kevlar fiber unidirectional (UD) sheet composite, the Kevlar fiber UD sheet composite was prepared by wet winding technology and hot pressing process using water-based acrylic acid/water-based polyurethane as matrix. The effects of blending resin ratio, resin content, hot pressing process and other factors on the bulletproof performance of Kevlar fiber UD sheet composite were investigated, the bulletproof mechanism of the material was revealed, and the structure of the target plate was optimized. The results show that the bulletproof property of Kevlar fiber UD sheet composite increases first and then decreases with the increase of the specific gravity of water-based acrylic acid resin in the blend resin. When the mass ratio of water-based polyurethane to water-based acrylic acid is 1∶2, the bulletproof property is better. With the increase of resin content, the bulletproof property of Kevlar fiber UD sheet composite material increases first and then decreases. When the resin content is 19wt%, the bulletproof property is better. The bulletproof performance of Kevlar fiber UD sheet composite increases first and then decreases with the increase of hot pressing pressure, hot pressing temperature and hot pressing time. The bulletproof mechanism of Kevlar fiber UD sheet composite material is mainly divided into three stages, the first stage mainly absorbs energy in the way of fiber shear damage, the second stage mainly absorbs energy in the way of fiber tensile fracture, and the third stage mainly absorbs energy in the way of fiber tensile deformation. The Kevlar fiber UD sheet composite with 8UD/4UD/8UD structure has better bulletproof performance.
-
-
表 1 弹道侵彻试验标准参数
Table 1 Ballistic penetration test standard parameters
Bullet specification Impact velocity/(m·s−1) Back face deformation depth/mm Shooting distance/m Impact angle/(°) 7.62×17 445±10 <25 5 0 表 2 不同树脂质量比靶板打靶结果
Table 2 Shooting results of target plates with different resin mass ratios
Serial number Resin (Polyurethane∶
Acrylic acid)Number of layers Resin content/wt% Single-layer areal
density/(g·m−2)Target plate areal
density/(kg·m−2)Penetration 1 2∶1 45 17 187 8.40 No 2 1∶1 44 18 190 8.36 No 3 2∶3 45 17 188 8.46 No 4 1∶2 44 19 192 8.42 No 5 2∶5 44 17 189 8.30 No 6 Acrylic acid 44 18 190 8.36 Yes 表 3 不同树脂含量靶板打靶结果
Table 3 Shooting results of target plates with different resin contents
Serial number Resin (Polyurethane∶
Acrylic acid)Number of layers Resin content/wt% Single-layer areal
density/(g·m−2)Target plate areal
density/(kg·m−2)Penetration 7 1∶2 50 10 168 8.32 No 4 1∶2 44 19 192 8.42 No 8 1∶2 40 26 208 8.30 No 9 1∶2 37 32 227 8.37 No 表 4 不同热压工艺靶板打靶结果
Table 4 Shooting results of target plates with different hot pressing processes
Serial number Hot pressing process Number of layers Resin content/wt% Target plate areal density/(kg·m−2) Penetration 10 7 MPa, 130℃, 20 min 42 21 8.34 No 4 10 MPa, 130℃, 20 min 44 19 8.40 No 11 14 MPa, 130℃, 20 min 42 21 8.30 No 12 17 MPa, 130℃, 20 min 42 22 8.42 No 13 10 MPa, 100℃, 20 min 42 22 8.39 No 14 10 MPa, 160℃, 20 min 44 18 8.37 No 15 10 MPa, 190℃, 20 min 43 20 8.43 Yes 16 10 MPa, 130℃, 10 min 43 20 8.33 No 17 10 MPa, 130℃, 15 min 43 20 8.37 No 18 10 MPa, 130℃, 25 min 44 17 8.30 No 表 5 不同结构 Kevlar纤维UD片材复合材料打靶结果
Table 5 Target shooting results of Kevlar fiber UD sheet composites with different structures
Serial number Structure Number of layers Mass ratio Resin content/wt% Target plate areal density/(kg·m−2) Penetration 20 4UD 44 — 18 8.37 No 21 8UD/4UD 34 1∶1.2 18 8.37 No 22 4UD/8UD 34 1.2∶1 18 8.38 No 23 8UD/4UD/8UD 29 1∶1.1∶1 19 8.43 No -
[1] 袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6): 2707-2715. YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2707-2715(in Chinese).
[2] BHATNAGAR A. Lightweight fiber-reinforced composites for ballistic applications[M]//Comprehensive Composite Materials II. Amsterdam: Elsevier, 2017: 527-544.
[3] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1-2): 161-173. DOI: 10.1016/S0263-8223(03)00029-1
[4] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms—A review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019, 223: 110966. DOI: 10.1016/j.compstruct.2019.110966
[5] WANG M, ZHONG L, CAO H, et al. Research on bending and ballistic performance of three-dimensional ply-to-ply angle interlock Kevlar/EP armor material[J]. Materials, 2022, 15(19): 6994. DOI: 10.3390/ma15196994
[6] CROUCH I G. Body armour—New materials, new systems[J]. Defence Technology, 2019, 15(3): 241-253. DOI: 10.1016/j.dt.2019.02.002
[7] 董彬, 魏汝斌, 王小伟, 等. 纤维增强树脂基复合材料防弹头盔研究进展[J]. 兵器材料科学与工程, 2022, 45(4): 125-132. DONG Bin, WEI Rubin, WANG Xiaowei, et al. Progress of bulletproof helmet made by fibre reinforced polymer composites[J]. Ordnance Material Science and Engineering, 2022, 45(4): 125-132(in Chinese).
[8] 艾青松, 潘智勇, 吴中伟, 等. 胶粘剂配方对芳纶防弹板性能的影响[J]. 高科技纤维与应用, 2019, 44(6): 33-37. AI Qingsong, PAN Zhiyong, WU Zhongwei, et al. The influence of adhesive formula on the performance of aramid bulletproof board[J]. Hi-Tech Fiber and Application, 2019, 44(6): 33-37(in Chinese).
[9] KARAHAN M. Comparison of ballistic performance and energy absorption capabilities of woven and unidirectional aramid fabrics[J]. Textile Research Journal, 2008, 78(8): 718-730. DOI: 10.1177/0040517508090487
[10] 艾青松, 李宗家, 吴中伟, 等. 芳纶机织布混杂芳纶无纬布的防弹性能研究[J]. 高科技纤维与应用, 2022, 47(1): 27-31. DOI: 10.3969/j.issn.1007-9815.2022.01.003 AI Qingsong, LI Zongjia, WU Zhongwei, et al. Study on bulletproof performance of aramid woven fabric mixed with aramid UD cloth[J]. Hi-Tech Fiber and Application, 2022, 47(1): 27-31(in Chinese). DOI: 10.3969/j.issn.1007-9815.2022.01.003
[11] 吴中伟, 张慧, 艾青松, 等. 芳纶防弹防刺材料研究[J]. 合成纤维, 2021, 50(6): 36-40. WU Zhongwei, ZHANG Hui, AI Qingsong, et al. Study on bullet-proof and stab-proof aramid materials[J]. Synthetic Fiber in China, 2021, 50(6): 36-40(in Chinese).
[12] YANG Y, CHEN X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017, 174: 233-243. DOI: 10.1016/j.compstruct.2017.04.033
[13] CAO M, ZHOU D, WANG Z, et al. An experimental study of the penetration resistance of UHMWPE laminates with limited thickness[J]. Thin-Walled Structures, 2024, 196: 111438.
[14] LÄSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites[J]. Composites Part B: Engineering, 2018, 147: 47-55. DOI: 10.1016/j.compositesb.2018.04.030
[15] 贾文星, 贾子琪, 田国峰, 等. 聚酰亚胺/超高分子量聚乙烯纤维混杂增强复合材料防弹性能[J]. 复合材料学报, 2023, 40(7): 3921-3927. JIA Wenxing, JIA Ziqi, TIAN Guofeng, et al. Bulletproof performance of polyimide/UHMWPE fiber hybrid reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3921-3927(in Chinese).
[16] HAN F, ZHANG Y, WANG C, et al. Analysis of ballistic performance and penetration damage mechanisms of aramid woven fabric reinforced polycarbonate composites with different matrix content[J]. Chemical Engineering Journal, 2023, 453: 139470. DOI: 10.1016/j.cej.2022.139470
[17] 胡建海, 唐鋆磊, 李湉, 等. 碳纤维和芳纶纤维的蚀刻改性及其复合材料界面结合性能研究进展[J]. 表面技术, 2021, 50(10): 94-116. HU Jianhai, TANG Junlei, LI Tian, et al. Research progress on etching modification of carbon fiber and aramid fiber and the interface bonding performance of their composite materials[J]. Surface Technology, 2021, 50(10): 94-116(in Chinese).
[18] 李婷, 王增效, 胡祖明, 等. 对位芳纶表面改性的最新研究进展[J]. 合成纤维工业, 2018, 41(6): 42-47. DOI: 10.3969/j.issn.1001-0041.2018.06.016 LI Ting, WANG Zengxiao, HU Zuming, et al. Latest research progress in surface modification of p-aramid fiber[J]. China Synthetic Fiber Industry, 2018, 41(6): 42-47(in Chinese). DOI: 10.3969/j.issn.1001-0041.2018.06.016
[19] 曾国屏, 董清龙, 刘德旺, 等. 水性聚氨酯/丙烯酸树脂合成及改性技术的研究进展[J]. 化工新型材料, 2021, 49(12): 12-15, 26. ZENG Guoping, DONG Qinglong, LIU Dewang, et al. Research progress on synthesis and modification of waterborne polyurethane/acrylic resin[J]. New Chemical Materials, 2021, 49(12): 12-15, 26(in Chinese).
[20] 中华人民共和国公安部. 警用防弹衣: GA 141—2010[S]. 北京: 中国标准出版社, 2011. Ministry of Public Security of the People's Republic of China. Police bulletproof vest: GA 141—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
[21] FUNCHESS P N, KRAMER L D, BINETTI V R, et al. Ballistic material with enhanced polymer matrix and method for production thereof: US Patent, 2010047549A1[P]. 2010-02-25.
[22] ZHENG Z, HUANG X, LI Y, et al. Influence factors of internal structure and interfacial compatibility of UHMWPE fiber/SEBS resin composites: Processing parameters, structure of fiber and nature of resin[J]. Composites Part B: Engineering, 2012, 43(3): 1538-1544. DOI: 10.1016/j.compositesb.2011.11.011
[23] 成航航. 核壳型丙烯酸树脂乳液的制备及性能研究[D]. 西安: 陕西科技大学, 2021. CHENG Hanghang. Preparation and properties of core-shell acrylic resin emulsion[D]. Xi'an: Shaanxi University of Science & Technology, 2021(in Chinese).
[24] LANGSTON T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites[J]. Composite Structures, 2017, 179: 245-257. DOI: 10.1016/j.compstruct.2017.07.074
[25] 马华菁, 时娟娟, 沈文东, 等. 防弹无纬布的研究概况[J]. 棉纺织技术, 2021, 49(5): 14-18. DOI: 10.3969/j.issn.1001-7415.2021.05.005 MA Huajing, SHI Juanjuan, SHEN Wendong, et al. Research overview of bulletproof unidirectional cloth[J]. Cotton Textile Technology, 2021, 49(5): 14-18(in Chinese). DOI: 10.3969/j.issn.1001-7415.2021.05.005
[26] 闫卫星, 郭艳文, 陈红霞, 等. 防弹防刺面料研究概况[J]. 产业用纺织品, 2022, 40(7): 1-7, 32. DOI: 10.3969/j.issn.1004-7093.2022.07.001 YAN Weixing, GUO Yanwen, CHEN Hongxia, et al. Research overview of bulletproof and stab-resistant fabrics[J]. Technical Textiles, 2022, 40(7): 1-7, 32(in Chinese). DOI: 10.3969/j.issn.1004-7093.2022.07.001
[27] 王孟, 刘程, 张玉, 等. 成型温度对CF/PPEK复合材料的缺陷和力学性能影响[J]. 复合材料科学与工程, 2024(3): 5-12. WANG Meng, LIU Cheng, ZHANG Yu, et al. Effect of molding temperature on defects and mechanical properties of CF/PPEK composites[J]. Composites Science and Engineering, 2024(3): 5-12(in Chinese).
[28] 徐英凯, 朱姝, 袁象恺, 等. 纺织结构碳纤维增强尼龙6 (CFF/PA6)复合材料的模压成型工艺[J]. 塑料工业, 2015, 43(7): 48-51, 68. DOI: 10.3969/j.issn.1005-5770.2015.07.012 XU Yingkai, ZHU Shu, YUAN Xiangkai, et al. Compression molding processing of carbon fiber fabric reinforced nylon 6 (CFF/PA6) composites[J]. China Plastics Industry, 2015, 43(7): 48-51, 68(in Chinese). DOI: 10.3969/j.issn.1005-5770.2015.07.012
[29] 周庆, 何业茂, 刘婷. 层间混杂复合材料装甲板防弹性能及其防弹机制[J]. 复合材料学报, 2019, 36(4): 837-847. ZHOU Qing, HE Yemao, LIU Ting. Bulletproof performance and bulletproof mechanism of interlaminar hybrid composite armor plate[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 837-847(in Chinese).
-
目的
Kevlar纤维与大部分树脂基体结合时界面性能差,导致关于Kevlar纤维UD复合材料防弹性能的研究较少,本文利用物理共混的方法,将水性聚氨酯和水性丙烯酸树脂混合,提高Kevlar纤维与树脂的界面性能,并制备Kevlar纤维UD片材复合材料,探究其防弹性能。
方法借弹道侵彻实验装置对不同比例共混树脂、树脂含量,热压工艺制备的Kevlar纤维UD片材复合材料进行防弹性能测试,使用Origin、扫描电镜对打靶数据和靶板破坏形貌进行分析。
结果①随着共混树脂中水性丙烯酸树脂比重的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当水性聚氨酯与水性丙烯酸树脂的比例为1∶2时,靶板背凸深度和靶板贯穿层所占均小于其他不同配比共混树脂的靶板。②随着树脂含量的增加,Kevlar纤维UD片材复合材料防弹性能呈先增大后减小的趋势,当树脂含量为19 wt%时,靶板背凸深度和靶板贯穿层所占比例均小于其他不同树脂含量的靶板。③Kevlar纤维UD片材复合材料防弹性能随着热压压力的增大呈先增大后减小的趋势,当热压压力为10 MPa时,靶板背凸深度和靶板贯穿层所占比例均小于其他不同热压压力的靶板。④Kevlar纤维UD片材复合材料防弹性能随着热压温度的增大呈先增大后减小的趋势,当热压温度为130 ℃时,靶板背凸深度和靶板贯穿层所占比例均小于其他不同热压温度的靶板。⑤Kevlar纤维UD片材复合材料防弹性能随着热压时间的增大呈先增大后减小的趋势,当热压时间为20 mina时,靶板背凸深度和靶板贯穿层所占比例均小于其他不同热压时间的靶板。⑥Kevlar纤维UD片材复合材料的防弹机制主要分成三个阶段,第一阶段主要以纤维剪切破坏的方式吸收能量,第二阶段主要以纤维拉伸断裂的方式吸收能量为主,第三阶段主要以纤维拉伸变形的方式吸收能量。⑦4UD/8UD结构靶板的背凸深度最小,靶板的抗凹陷性能较好;8UD/4UD结构靶板的贯穿所占比例最小,靶板的损伤容限较高;8UD/4UD/8UD结构靶板的背凸深度仅比4UD/8UD结构靶板大1 mm,8UD/4UD/8UD结构靶板比8UD/4UD结构靶板的贯穿层所占比例仅大10 %,综合考虑,8UD/4UD/8UD结构靶板的防弹性能最优。
结论①当混合树脂比例为2∶4时,共混树脂既能改善Kevlar纤维与水性聚氨酯界面性能差的缺点,又能解决水性丙烯酸树脂自身力学性能差的问题,使得Kevlar纤维UD片材复合材料的防弹性能较好。②当Kevlar纤维UD片材复合材料的树脂含量为19 wt%,树脂既可以均匀覆盖纤维,快速传递载荷,纤维与树脂协同发挥作用,也可以使纤维发挥自身力学性能。③合适的压力、温度和时间可以使共混树脂充分熔融,在压力和时间的作用下,树脂流动性好,靶片逐渐被压实,均匀填补纤维与纤维之间的空隙,界面性能提高,有利于应力波的快速传递,纤维与树脂可以协同发挥作用,充分吸收冲击能量。④8UD/4UD/8UD结构靶板前面的8UD结构靶片增加了后面靶片的响应时间,使得后面纤维能够拉伸变形,靶板中间的4UD结构靶片纤维变性能力强,能够通过拉伸断裂等方式吸收能量,靶板后面的8UD结构靶片也能够拉伸变形吸收能量,且提供背衬硬度,限制纤维过度变形,避免背凸深度过大。