超声辅助法制备片状Ca-Mg复相碳酸盐及其对PBAT复合材料性能的影响

Preparation of flake Ca-Mg composite carbonate by ultrasonic assisted method and its effect on the properties of PBAT composites

  • 摘要: 片状碳酸盐类材料凭借无毒、价廉和原料来源丰富等优点已成为重要的热塑性聚合物增强增刚无机填料,但其制备工艺复杂,难以实现量产。本文结合石灰石产业中低品位石灰石附加值不高的问题,以含Mg的石灰石为原料,采用超声辅助碳化法制备了片状Ca-Mg复相碳酸盐(FCM)。探究了不同Mg含量、不同碳化反应温度、不同超声功率等工艺参数对产物形貌的影响。在此基础之上,将活性FCM与聚对苯二甲酸-己二酸丁二醇酯(PBAT)树脂共混挤出造粒后加工成复合材料,对比研究了添加不同种类的填料和不同配比对复合材料性能影响。结果表明,Mg含量、超声功率、反应温度对Ca-Mg复相碳酸盐的形貌有显著的影响,随着Mg含量提升到20.61wt%、反应温度提升至70℃、超声功率提升到400 W,得到了具有大量片状结构、比表面积为23.5 m2/g的Ca-Mg复相碳酸盐产物;添加了活性FCM的复合材料展现出优异的力学性能,当活性FCM添加量为20wt%时,复合材料的冲击强度、弯曲强度和弯曲模量分别较纯PBAT提升1倍、2倍和2.8倍;当添加量为40wt%时,这些性能指标进一步提升,分别比纯PBAT提升了1.2倍、2.6倍和4.8倍;更重要的是,添加了活性FCM的复合材料土壤降解率显著提高,这将有效促进复合材料在使用后降解,使其在完成服役使命后能够迅速融入自然环境,进一步体现其环保和可持续的特性。

     

    Abstract: Flaky carbonate materials have become important thermoplastic polymer reinforced rigid inorganic fillers due to their advantages of non-toxicity, low cost and abundant raw materials. However, their preparation process is complex and difficult to achieve mass production. In this paper, combined with the problem of low added value of low-grade limestone in limestone industry, flaky Ca-Mg complex carbonates (FCM) were prepared by ultrasonic-assisted carbonization method using Mg-containing limestone as raw material. The effects of process parameters such as different Mg contents, different carbonization reaction temperatures and different ultrasonic powers on the morphology of the product were investigated. On this basis, the active FCM and poly(butylene adipate-co-terephthalate) (PBAT) resin were blended and extruded into composites. The effects of different kinds of fillers and different ratios on the properties of composites were compared. The results show that Mg content, ultrasonic power and reaction temperature have a significant effect on the morphology of Ca-Mg composite carbonate. With the increase of Mg content to 20.61wt%, reaction temperature to 70℃ and ultrasonic power to 400 W, Ca-Mg composite carbonate products with a large number of flake structures and a specific surface area of 23.5 m2/g are obtained. The composites with active FCM showed excellent mechanical properties. When the content of active FCM was 20wt%, the impact strength, flexural strength and flexural modulus of the composites were 1 time, 2 times and 2.8 times higher than those of pure PBAT, respectively. When the addition amount is 40wt%, these performance indexes are further improved, which are 1.2 times, 2.6 times and 4.8 times higher than that of pure PBAT, respectively. More importantly, the soil degradation rate of the composite material added with the active FCM is significantly improved, which will effectively promote the degradation of the composite material after use, so that it can quickly integrate into the natural environment after completing the service mission, further reflecting its environmental protection and sustainable characteristics.

     

/

返回文章
返回