UHPC与混凝土基体间界面剪切强度的影响因素

Factors influencing interfacial shear strength between UHPC and concrete substrate

  • 摘要: 超高性能混凝土(Ultra-high performance concrete,UHPC)具备优异的力学与抗渗性能,在混凝土结构补强加固工程中有着广阔的应用前景,如何提高UHPC与既有基体间的粘结性能成为土木工程领域普遍关心的重要课题。本文利用标准养护条件制备的试件开展试验研究,首先研究了UHPC水胶比与混凝土基体初始含水饱和度对二者间界面剪切强度的影响规律。此外,选取特定配合比的UHPC,研究了其与不同饱和度混凝土间界面剪切强度随龄期的演化规律。向UHPC中掺入预湿轻骨料以实现内养护,考虑UHPC中轻骨料取代率、混凝土基体含水饱和度的影响,研究了不同龄期养护后轻骨料UHPC与混凝土基体间界面剪切强度的演化规律。利用扫描电镜技术观测了UHPC与混凝土间界面的微结构。结果表明:(1)对于未掺轻骨料的UHPC:不论水胶比如何变化,其与饱水基体间的界面剪切强度最高,而与干燥基体间的界面剪切强度最低;其与干燥基体间的界面剪切强度随水胶比的升高而降低,与预湿基体间的界面剪切强度随水胶比的升高而先增长后降低。(2)水胶比为0.154的UHPC与不同饱和度基体间28 d时的界面剪切强度均较7 d时显著增长;90 d时,其仅与50%饱和度基体间的界面剪切强度进一步显著增长。(3)低轻骨料取代率能够提高UHPC与干燥基体间7 d时的界面剪切强度,而高轻骨料取代率能够显著提高UHPC与干燥基体间28 d和90 d时的界面剪切强度;28 d和90 d时,轻骨料UHPC与50%饱和度基体间的界面剪切强度显著高于干燥基体;7 d时,不同轻骨料取代率的UHPC与饱水基体间便可形成一定的界面剪切强度,且该强度在28 d和90 d时均进一步增长。

     

    Abstract: Ultra-high performance concrete (UHPC) has excellent mechanical and impermeability properties, and has a broad application prospect in the concrete structure reinforcement project. How to improve the bonding performance between UHPC and existing substrate has become an important topic of general concern in the field of civil engineering. In this paper, experimental studies were carried out using specimens prepared under standard curing conditions, and the effects of the water-binder ratio (w/b) of UHPC and the initial water saturation of the concrete substrate on the interfacial shear strength between them were first investigated. In addition, the evolution law of interfacial shear strength with age between the selected UHPC with a specific mix proportion and concrete with different saturation was investigated. Pre-wetted lightweight aggregate was incorporated into UHPC to achieve internal curing, and the evolution law of the interfacial shear strength between lightweight aggregate UHPC and concrete substrate after curing with different ages was investigated by taking into account the effects of the replacement rate of lightweight aggregate in UHPC, and the water saturation of concrete substrate. The microstructure of the interface between UHPC and concrete was observed using scanning electron microscopy. The results show that (1) for UHPC without lightweight aggregates, the interfacial shear strength between it and water-saturated substrate is the highest while the interfacial shear strength between it and dry substrate is the lowest irrespective of the change of the w/b of UHPC. The interfacial shear strength between UHPC and dry substrate decreases with the increase of w/b, and that between UHPC and pre-wetted substrate increases first and then decreases with the increase of the w/b. (2) The interfacial shear strengths between UHPC with a w/b of 0.154 and different saturated substrate all increase significantly at 28 d compared to that at 7 d. At 90 d, only the interfacial shear strengths between it and 50% saturated substrate further increase significantly. (3) A low lightweight aggregate replacement rate can increase the interfacial shear strength between UHPC and dry substrate at 7 d, while a high lightweight aggregate replacement rate can significantly increase the interfacial shear strength between UHPC and dry substrate at 28 d and 90 d. The interfacial shear strength between lightweight aggregate UHPC and 50% saturated substrate is significantly higher than that between lightweight aggregate UHPC and dry substrate at 28 d and 90 d. At 7 d, a certain interfacial shear strength can be formed between UHPC with different lightweight replacement rates and water-saturated substrate, and the strength further increases at both 28 d and 90 d.

     

/

返回文章
返回