再生碳纤维毛毡纤维取向与克重多目标优化研究

Multi-objective optimization of fiber orientation and grammage of recycled carbon fiber felt

  • 摘要: 废弃复合材料的回收再利用具有重要意义,传统回收方法能耗高且易损伤材料结构,回收纤维取向杂乱,无法进行高价值利用。本文采用团队研发的新型可回收环氧树脂制备IV型储氢气瓶废弃复合材料为对象,研究碳纤维的高效回收方法。自主搭建纤维湿法取向装置制备纤维毡,探究湿法取向过程各工艺对再生纤维毡制备效果包括取向度及克重的影响;采用响应面法(RSM)建立取向度和克重目标模型并进行可靠性分析,结合非支配排序遗传算法II (NSGA-II)对湿法取向工艺参数进行多目标优化;采用优劣解距离法(TOPSIS)决策选择最优解,实验验证多目标优化结果。结果表明:各工艺条件对纤维毡取向度影响大小为纤维长度>纤维含量>分散剂含量>滤网孔径;对纤维毡克重影响大小为纤维含量>分散剂含量>滤网孔径>纤维长度。目标函数模型具有较高的准确性;多目标优化纤维毡制备最佳工艺为纤维长度3 mm、纤维含量6.37 g/L、分散剂含量13.37 g/L、滤网孔径0.75 mm;验证实验制备纤维毡取向度81.08%,与遗传算法预测取向度(81.84%)误差0.94%;实验制备纤维毡克重42.86 g/m2,与遗传算法预测克重(42.57 g/m2)误差0.68%。

     

    Abstract: It is of great significance to realize the recycling and reuse of waste composite materials. Traditional recycling methods consume high energy and are easy to damage the material structure of the fibers. The recycled fibers are oriented in a disorderly manner and cannot be utilized for high value. In this research, the new recyclable epoxy resin developed by our team was used to manufacture type IV hydrogen storage vessel, and the efficient recycling method of carbon fiber from waste composite hydrogen cylinder was studied. The fiber wet orientation device was designed independently to prepare oriented fiber felt. The effects of various process in the wet orientation process on the quality of regenerated fiber felt samples, including orientation degree and weight, were explored. The response surface method (RSM) was used to establish the objective models related to the orientation and grammage of the fiber felt, and the reliability of the models were analyzed. Based on the models, the non-dominated sorting genetic algorithm II (NSGA-II) was used to perform multi-objective optimization of the parameters of fiber wet orientation process. The optimal solution was selected using technique for order preference by similarity to ideal solution (TOPSIS), and experiments were designed to verify the results of multi-objective optimization. The results show that the impact of various process conditions on the orientation of fiber felt is ranked as fiber length > fiber content > dispersant content > filter mesh hole size. And the order of the impact of various process conditions on the grammage of fiber felt is fiber content > dispersant content > filter mesh hole size > fiber length. The objective function models are very reliable for analyzing the orientation and grammage of the fiber felt. Through the multi-objective optimization algorithm, the optimal process parameters for the preparation of regenerated fiber felt are fiber length 3 mm, fiber content 6.37 g/L, dispersant content 13.37 g/L, and filter mesh hole size 0.75 mm. The orientation degree of the fiber felt prepared by verification experiment is 81.08%, with an error of 0.94% from the orientation degree (81.84%) predicted by genetic algorithm. The grammage of the fiber felt experimentally prepared is 42.86 g/m2, with an error of 0.68% from the grammage (42.57 g/m2) predicted by genetic algorithm.

     

/

返回文章
返回