低烟低热薄壁阻燃聚碳酸酯材料的制备与性能

Preparation and properties of thin-wall flame-retardant polycarbonate materials with low heat release and smoke

  • 摘要: 兼具低烟低热和薄壁阻燃的无卤无氟聚碳酸酯(PC)的制备是该领域面临的一个挑战。以八甲基环四硅氧烷和硼酸为原料,通过缩聚反应制备了一种聚硼硅氧烷(PBS)阻燃剂,将其与硼酚醛树脂(LPR)复配制备了PBS-LPR/PC复合材料。结果表明:在PBS和LPR总添加量为10wt%、质量比3∶1时,在PC中表现出最佳的协同阻燃效果,1.6 mm厚的PC样品能够通过UL-94垂直燃烧测试的V-0级别。与PC相比,该样品的峰值放热率(pHRR)、峰值产烟率(pSPR)、总热释放(THR)和总烟生成(TSP)分别降低了76%、64%、49%和65%。阻燃机制研究表明:PBS和PC的交联成炭以及LPR的原位成炭是阻燃性能提高的主要原因。7.5%PBS-2.5%LPR/PC的缺口冲击强度是PC的2.3倍,材料表现出高韧的特性。

     

    Abstract: The preparation of halogen-free and fluorine-free thin-wall flame-retardant polycarbonate (PC) with low smoke and heat release was a challenge in the field. Polyborosiloxane (PBS) flame retardant was prepared by polycondensation reaction between octamethyl cyclotetrasiloxane and boric acid, and then compounded with boron-phenolic resin (LPR) to prepare PBS-LPR/PC composites. The results show that when the total amount of PBS and LPR is 10wt% and the mass ratio is 3∶1, the best flame-retardant effect is shown in PC, the 1.6 mm thick PC sample can pass UL-94 V-0 rating. Compared with that of pure PC, the peak heat release rate (pHRR), the peak smoke production rate (pSPR), the total heat release (THR) and the total smoke production (TSP) of sample reduces by 76%, 64%, 49% and 65%, respectively. The investigation on flame-retardant mechanism show that LPR decreases the viscosity of PC composites first and then increases, which confirms the generation of cross-linking reaction. The notched impact strength of 7.5%PBS-2.5%LPR/PC is 2.3 times that of PC, which makes the material show high toughness.

     

/

返回文章
返回