Abstract:
This article reviews the energy absorption mechanism and damage modes of fiber reinforced resin matrix composites in the field of impact resistance. Firstly, the applications of fiber reinforced composites in the fields of ballistic protection and aerospace are introduced. In addition, the advantages and disadvantages of high-performance fibers such as ultra-high molecular weight polyethylene fiber (UHMWPE), aramid fibers and carbon fibers are compared. Secondly, based on ballistic experiments and theoretical simulations of various fiber reinforced resin matrix composites, the energy absorption mechanism and damage mode of bulletproof composites are analyzed. It is found that tensile deformation is the main energy absorption mode of composites, and delamination is its main damage mode. Finally, the classification and characteristics of fabric structures and their influence on the ballistic performance of composites are summarized and the development prospect of fiber reinforced resin matrix composites is prospected.