Abstract:
With the extensive application of carbon fiber reinforced resin matrix composites in aerospace field, structure/function integrated composites will play a crucial part. In this paper, asphalt based carbon fiber (CF) reinforced cyanate ester composites with high thermal conductivity were prepared by functional interlayer technology (FIT). The film material graphene sheets (GNPs)-Al
2O
3/CF prepared by electrophoretic deposition of GNPs and Al
2O
3 on the surface of the short-cut carbon fiber film was used as the functional interlayer film to replace the resin-rich layer region between the fiber layers. The in-plane thermal conductivity and through-plane thermal conductivity of orthogonal lamination composites are increased by 123.1% and 77.5%. The in-plane thermal conductivity and through-plane thermal conductivity of quasi-anisotropic lamination composites are increased by 119.0% and 50.0%, respectively. In addition, the addition of multifunctional intercalation structure can prevent the propagation of cracks and improve the interlaminar toughness of composites. Therefore, the multifunctional intercalation structure can not only form an effective thermal network structure between the layers to improve the in-plane and out-of-plane thermal conductivity of the composite, but also improve the toughening efficiency of the interlayer region.