Abstract:
Using the method of combining quasi-static axial compression experiment with finite element simulation, the axial compression characteristics and failure mechanisms of 3D braided-unidirectional ply (3D-UD) hybrid tubes were investigated. Test results show that the peak load, total absorbed energy and specific energy absorption (SEA) of 3D-UD hybrid tube are increased by 20.3%, 109.2% and 67.1% respectively compared to the UD tube, and the compression energy absorption mode becomes more stable. In addition, the failure process of 3D-UD hybrid tubes was simulated by finite element method. The results show that load-displacement curves are in good accordance with experiment results so that the reliability of the simulation model is verified. Combined with the experimental results and the simulation analysis of the damage deformation of the mixed tube, it is found that the binding and supporting effects of the outer layer 3D and the inner layer 3D on the sandwich UD inhibit the breakage of the UD tube wall due to excessive bending. At the same time, the stability failure and energy absorption of the sandwich UD tube prevent the 3D tube from serious braided layer crimp. Therefore, the mixed tube can effectively resist the wall deformation and improve the stability and energy absorption under axial compression.