物理场辅助填料粒子在3D打印中取向调控研究进展

Research progress on the regulation of filler particle alignment during physics-assisted 3D printing

  • 摘要: 3D打印是一种自下而上、分层制造的材料累加制造方法。当前,3D打印正由原型制造向高性能化和功能化方向发展,对3D打印材料和加工过程调控提出更高的要求。纳米粒子在3D打印材料中的有序排列有助于提升打印制件的性能,但如何有效调控纳米粒子的取向面临挑战。在3D打印过程中引入物理场(磁场、电场及超声场)是实现打印制件微观结构精准操控的有效策略之一。这不仅赋予打印制件一定的功能,也为制备具有多尺度、多响应结构制件提供新的思路。因此,基于物理场辅助的3D打印成为了近年来的研究热点。本文首先简述了3D打印技术种类及其特点,并强调了物理场辅助3D打印调控纳米粒子取向的重要性;其次,梳理和归纳了物理场辅助3D打印调控纳米粒子取向的基本原理、材料要求、应用及性能。最后,对物理场辅助3D打印调控填料粒子取向存在的问题与挑战进行了总结,并对其未来发展方向进行了展望。

     

    Abstract: 3D printing is a bottom-up, layer-by-layer material additive manufacturing technique. Currently, 3D printing is evolving from prototype manufacturing towards high-performance and functionalization, placing higher demands on the control of printing materials and processes. The orderly arrangement of nanoparticles in 3D printing materials is crucial for enhancing the performance of printed components, yet effectively controlling the orientation of nanoparticles remains challenging. Incorporating physical fields (magnetic, electric, and ultrasonic fields) into the 3D printing process emerges as one of the effective strategies for precise microstructure manipulation of printed items. This approach not only endows the printed components with specific functions but also provides new insights for fabricating multi-scale and multi-responsive structured components. Therefore, physical field-assisted 3D printing has become a research hotspot in recent years. This article begins by briefly describing the types and characteristics of 3D printing technology, emphasizing the importance of physical field assistance in controlling the orientation of nanoparticles. Subsequently, it reviews and summarizes the fundamental principles, material requirements, applications, and performance of physical field-assisted 3D printing in controlling nanoparticle orientation. Finally, the problems and challenges existing in controlling the orientation of filler particles in physical field-assisted 3D printing are summarized, and its future development direction is prospected.

     

/

返回文章
返回