羟基化氮化硼纳米片/纳米纤维素复合材料制备及其导热性能

Preparation and thermal conductivity study of hydroxylated boron nitride nanosheets/nanocellulose composite

  • 摘要: 氮化硼纳米片(BNNS)/聚合物复合材料因其高导热性能和电绝缘性能在热管理材料领域具有很大的潜力,但是由于BNNS表面化学惰性造成较高的界面热阻,导致BNNS 的优越性尚未得到充分发挥。通过高温碱处理结合液相辅助超声的方法成功制备羟基化氮化硼纳米片(BNNS-OH),然后采用真空抽滤结合压制干燥方法将BNNS-OH与纤维素纳米纤维(CNF)结合制备BNNS-OH/CNF高导热复合材料。氮化硼纳米片表面修饰的羟基有利于增强与CNF之间的相容性和BNNS的分散性,从而减少界面热阻;并且一维结构的CNF不会完全覆盖导热填料,压制干燥方法可以进一步减少填料与聚合物之间的空隙,形成致密的层状结构,有利于填料间更好接触,形成连续热传导通道,这都有利于提高复合材料热导率。在负载30wt%BNNS-OH填料下,BNNS-OH/CNF的热导率高达14.571 W·m−1·K−1,比纯CNF薄膜大约高出819%。在实际散热应用中,与CNF薄膜相比,使用BNNS-OH/CNF复合薄膜的LED芯片在150 s内温度降低了29.5℃。

     

    Abstract: The potential of boron nitride nanosheets (BNNS) in thermal management materials is significantly hindered by the inherent surface chemical inertness that leads to a substantial interfacial thermal resistance. To overcome this limitation, hydroxyl-functionalized boron nitride nanosheets (BNNS-OH) were successfully synthesized through a high-temperature alkali treatment coupled with liquid-phase assisted ultrasonication. Subsequently, a vacuum filtration combined with compression drying technique was employed to fabricate BNNS-OH/CNF composites. The hydroxyl groups on the surface of BNNS enhance compatibility with CNF and improve the dispersion of BNNS, thereby reducing the interfacial thermal resistance. Furthermore, the one-dimensional structure of CNF does not fully cover the thermal fillers, and the compression drying method effectively minimizes the voids between the fillers and polymer, resulting in a dense layered structure. This facilitates better contact between fillers, forming continuous thermal conduction pathways and enhancing the thermal conductivity of the composite material. When loaded with 30wt%BNNS-OH, the thermal conductivity of the BNNS-OH/CNF composite reaches as high as 14.571 W·m−1·K−1, approximately 819% higher than that of pure CNF films. In practical heat dissipation applications, compared to CNF films, LED chips encapsulated with BNNS-OH/CNF composite films exhibited a temperature reduction of 29.5℃ within 150 s.

     

/

返回文章
返回