基于梁式试验的UHPC-高强钢筋搭接黏结性能

Bonding properties of UHPC-high strength rebar based on beam test

  • 摘要: 为了研究高强钢筋与超高性能混凝土(UHPC) 的黏结性能,通过梁式搭接试验,设计制作了9根搭接梁,分析了钢筋搭接长度、钢纤维掺量、机械锚固措施对搭接梁中高强钢筋与UHPC黏结性能的影响。结果表明:采用UHPC连接的搭接梁,搭接段受拉钢筋与混凝土具有更优异的黏结性能;随着钢筋搭接长度的增加,搭接梁的峰值荷载提高,但平均黏结强度逐渐减小;搭接梁的峰值荷载和黏结强度随着钢纤维掺量的增大而增大;采用机械锚固措施处理后的搭接梁,具有更高的峰值荷载和黏结强度,其中采用弯钩处理的搭接梁峰值荷载和黏结强度提升最为明显,分别提高了212.4%、199.4%,并且搭接钢筋发生屈服。根据搭接梁达到峰值荷载时轴力和弯矩的平衡条件,计算出搭接梁中钢筋的最大拉应力,进一步建立钢筋与UHPC平均黏结强度的计算方法,并与中心拉拔试验、对拉搭接试验结果进行对比。

     

    Abstract: To study the bonding properties of high-strength steel bars and ultra-high-performance concrete (UHPC), nine groups of lap beams were designed and fabricated. The influences of specific variables on the bonding properties were analyzed, including lap length, steel fiber volume content, and mechanical anchoring measures. The experimental results show that the tensile steel bars in the lap section of the lap beams connected with UHPC have better performance on the bonding properties with concrete. Increasing the lap length promotes peak load but the average bonding strength of the lap beams on the contrary. With the increase of steel fiber volume content, the peak load and bond strength of the lap beams increase. Mechanical anchoring adopted lap beams show a higher peak load and bonding strength, where bent hooks treated lap beam shows the highest enhancement, with peak load and bond strength improved by 212.4% and 199.4%, respectively, and it is worth mentioning that the hooked lap steel bars yielded. Based on the equilibrium condition of axial force and bending moment at the peak point, the maximum tensile stress of the steel bar in the lap beam was calculated. A calculation method of the average bonding strength between the steel bar and UHPC was then established. The proposed method calculation results were compared with the centre pull-out test and brace lap test results subsequently.

     

/

返回文章
返回