MXene-PEDOT:PSS修饰PDMS多孔弹性体高灵敏度柔性压阻传感器

High sensitivity flexible piezoresistive sensor of PDMS porous elastomer decorated by MXene-PEDOT:PSS

  • 摘要: 柔性压阻传感器在可穿戴式设备、电子皮肤、人机交互等领域有着极大的应用需求。常见的柔性压阻传感器导电敏感介质存在成本高、制备工艺复杂的问题,限制了其实用化进程和批量化生产。本文以明胶为牺牲剂制备了具有多孔结构的聚二甲基硅氧烷(PDMS)弹性体,再采用浸渍法获得了聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐) (PEDOT:PSS)和MXene复合修饰的PDMS柔性压阻传感器。实验表明,当PEDOT:PSS和MXene复合浓度分别为15 mg/mL和10 mg/mL时,传感器灵敏度获得最大值,在12~40 kPa压力范围内,灵敏度达29.1 kPa−1。经测试,所制备的传感器响应时间为0.36 s,回复时间为0.6 s。该传感器可以检测人体关节(手指、肘部、膝盖)运动,表明开发的压力传感器在智能衣物、柔性可穿戴电子设备及人机交互领域具有良好的应用前景。

     

    Abstract: Flexible piezoresistive sensors have great application demands in wearable devices, electronic skins, man-computer interaction, and other fields. The common conductive sensitive media of flexible piezoresistive sensors suffer from high cost and complex preparation processes, which limit their practical application and mass production. A porous polydimethylsiloxane (PDMS) elastomer was prepared using gelatin as a sacrificial agent, and a MXene-poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT:PSS)/PDMS composite piezoresistive sensor was obtained by impregnation method. Experimental results demonstrated that when the composite concentrations of PEDOT:PSS and MXene are 15 mg/mL and 10 mg/mL, respectively, the sensor has the highest sensitivity, reaching up to 29.1 kPa−1 under the force range of 12-40 kPa. The response and recovery time of the piezoresistive sensor are 0.36 s and 0.6 s, respectively. After verification, the sensor can detect the movement of human joints (finger, elbow and knee), indicating that the developed piezoresistive sensor exhibits good application prospects in the fields of smart clothing, flexible wearable electronic devices, and human-computer interaction.

     

/

返回文章
返回