Ag量子点协同四环素的抑菌及其机制

Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline

  • 摘要: 四环素类抗生素因具有高效、低毒、广谱抑菌性等优点而被广泛使用,但随着抗生素的滥用致使大量的耐药菌出现,使四环素类抗生素的药用价值逐渐降低。超小粒径的纳米Ag虽可使细菌甚至耐药菌失活,但单独使用毒性较强,且易团聚。为此,本文利用Ag的d轨道为满电子结构,可与供电子基团配位的原理,设计了核壳型介孔Fe3O4@SiO2@mTiO2@Ag-四环素(FSmTA-T)复合材料用以解决抗生素耐药和纳米Ag团聚、强毒性问题。研究结果显示,制备的复合材料中纳米Ag量子点的粒径约为2.84 nm,可与四环素环3中的羰基键合,同时,相比四环素,复合材料对大肠杆菌、金黄色葡萄球菌、耐四环素沙门氏菌和白色念珠菌均具有较高的抑菌活性,并可有效破坏细菌细胞壁而使其死亡,且对哺乳细胞的毒性降低为原来的1/3。因此,其优越的抑菌活性可应用于污水处理领域。

     

    Abstract: Tetracycline antibiotics are widely used because of their high efficiency, low toxicity and broad-spectrum bacteriostasis, but with the abuse of antibiotics leading to the emergence of a large number of resistant bacteria, the medicinal value of tetracycline antibiotics gradually decreases. Although the ultra-small particle size of Ag can inactivate bacteria and even drug-resistant bacteria, it is highly toxic and easy to agglomerate when used alone. Therefore, in this study, the core-shell mesoporous Fe3O4@SiO2@mTiO2@Ag-tetracycline (FSmTA-T) composite was designed to solve the problems of antibiotic resistance, Ag nanoparticles agglomeration and strong toxicity by using the principle that the d orbital of Ag is a full electron structure and can be coordinated with the electron donor group. The results show that the particle size of the Ag quantum dots in the prepared composite is 2.84 nm, which could be bonded with the carbonyl group in tetracycline ring 3, and compared with tetracycline, the composite material has high bacteriostatic activity against Escherichia coli, Staphylococcus aureus, tetracycline-resistant Salmonella and Candida albicans, and could effectively destroy the bacterial cell wall and make it die, while the toxicity is reduced to 1/3 of the original. Therefore, its superior bacteriostatic activity can be applied to sewage treatment.

     

/

返回文章
返回