可回收高性能双固化环氧树脂的制备及其电气性能

王浩欢, 秦岭, 王天兴, 史玲娜, 吴金锁, 文森

王浩欢, 秦岭, 王天兴, 等. 可回收高性能双固化环氧树脂的制备及其电气性能[J]. 复合材料学报, 2024, 41(8): 4103-4112. DOI: 10.13801/j.cnki.fhclxb.20240003.004
引用本文: 王浩欢, 秦岭, 王天兴, 等. 可回收高性能双固化环氧树脂的制备及其电气性能[J]. 复合材料学报, 2024, 41(8): 4103-4112. DOI: 10.13801/j.cnki.fhclxb.20240003.004
WANG Haohuan, QIN Ling, WANG Tianxing, et al. Preparation and electrical properties of recyclable high performance dual-curing epoxy resin[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4103-4112. DOI: 10.13801/j.cnki.fhclxb.20240003.004
Citation: WANG Haohuan, QIN Ling, WANG Tianxing, et al. Preparation and electrical properties of recyclable high performance dual-curing epoxy resin[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4103-4112. DOI: 10.13801/j.cnki.fhclxb.20240003.004

可回收高性能双固化环氧树脂的制备及其电气性能

基金项目: 重庆市交通科技项目(2022-02);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0116;CSTB2022TIAD-KPX0117);交通运输行业重点科技项目(2022-ZD3-023)
详细信息
    通讯作者:

    王浩欢,博士,工程师,研究方向为交能融合方向 E-mail: 20134209@cqu.edu.cn

  • 中图分类号: TB332

Preparation and electrical properties of recyclable high performance dual-curing epoxy resin

Funds: Transportation Technology Program of Chongqing Municipal (2022-02); Special Key Program of Technological Innovation and Application Development of Chongqing Municipal (CSTB2022TIAD-KPX0116; CSTB2022TIAD-KPX0117); Key Technology Program in Transportation Industry (2022-ZD3-023)
  • 摘要: 环氧树脂为交通电气化进程提供了优异的绝缘、支撑和保护功能,但传统环氧树脂难以回收,这不符合绿色交通的可持续发展目标。现有的可回收环氧树脂综合性能较差,限制了其在交通电气化进程中的应用,亟需开发高性能可回收的环氧树脂。本文提出了光敏油基树脂和环氧树脂的光-热双固化方法,利用酯交换机制,在无催化剂的高温高压环境下实现了双固化环氧树脂的回收,同时回收树脂仍保持出色的理化和电气性能。结果表明:回收前双固化环氧树脂的综合性能良好;回收树脂的粒径越小、热压压强越大,回收后树脂的理化和电气性能越好,在220℃、10 MPa的环境下热压3 h后回收树脂的综合性能较优,弯曲和拉伸强度恢复率分别为92.0%和93.7%,工频下介电常数和介质损耗与回收前相差不大,击穿强度恢复率达到98.4%。该树脂在推进交通电气化的过程中具有一定潜力和应用前景。

     

    Abstract: Epoxy resins play a crucial role in providing insulation, support, and protection for the electrification process in transportation. However, the conventional methods of recycling epoxy resins are quite complex and do not align with the sustainability goals of green transportation. There is an urgent need to develop environmentally friendly and recyclable epoxy resins. To address the issues related to the physical, chemical, and electrical properties of recyclable epoxy resins, this paper introduces a novel photothermal dual-curing method that combines photosensitive oil-based resin with epoxy resin. This innovative approach leverages the transesterification mechanism to recover the dual-curing epoxy resin under high-temperature and high-pressure conditions without the need for a catalyst. Remarkably, the recovered resin retains excellent physical, chemical, and electrical properties. The study demonstrates that the initial properties of the dual-curing epoxy resin are promising. The quality of the recovered resin improves with smaller resin particle sizes and higher hot pressing pressures. After undergoing a hot pressing process at 220℃ and 10 MPa for 3 h, the recovered resin exhibits its best comprehensive properties, with recovery rates of 92.0% for bending strength and 93.7% for tensile strength. Furthermore, the dielectric constant and dielectric loss at power frequency remain largely unchanged compared to their values before recovery, with a remarkable breakdown strength recovery rate of 98.4%. This research highlights the significant potential and application prospects of dual-curing epoxy resin in advancing the electrification of transportation.

     

  • 交通建设电气化是一种绿色、环保的发展理念,对能源结构及经济转型有着重要的推动作用[13]。环氧树脂具有优异的绝缘性、高强度及化学稳定性,可在交通电气化建设中广泛应用于电缆接头与终端[4-5]、变压器[6-7]、路面材料[8-9]及防护涂层[10-11]等方面。然而传统环氧树脂在固化交联后难以回收、有效降解和再生利用,造成了严重的资源浪费和环境污染[12-14],因此,研究与开发可回收环氧树脂是十分必要的。

    构建共价自适应网络为回收环氧树脂提供了技术方案[15-19]。共价自适应网络内具有大量可逆动态共价键,在外界条件刺激下能够激发共价自适应网络内部的键交换反应,致使网络发生重组[20-24]

    孙文杰等[25]通过异氰酸酯和仲胺构筑受阻脲键,键入到环氧链段中,制备出了具有修复能力的氢化环氧树脂,力学性能修复率达到70%以上;Memon等[26]以生物基香兰素和石油基对羟基苯甲醛为原料合成了两种含动态亚胺键的固化剂,固化的环氧树脂具有可再加工和可降解性,回收后的环氧树脂力学性能损失较小;Tian等[27]以生物基甘油三酯为环氧单体、香兰素衍生亚胺化合物为固化剂合成了可回收的生物基环氧树脂,拉伸强度恢复率达到85%以上。然而,目前学者们研究的可回收环氧树脂机械强度普遍较差[28-29],且对于其回收前后电气性能的研究较少[25, 30-32]

    本文采用了光敏油基树脂和环氧树脂的光-热双固化方法,通过酯交换原理,在无催化剂的高温高压环境下实现了双固化环氧树脂的高性能回收,研究了双固化环氧树脂的回收过程,分析了回收树脂颗粒粒径及热压压强对回收树脂力学性能和电气性能的影响。

    双酚A型环氧树脂(DGEBA):工业纯,南京强山新材料有限公司;甲基六氢苯酐(MHHPA)、2-乙基-4-甲基咪唑(EMI-2,4):工业纯,上海麦克林生化科技有限公司;环氧大豆油丙烯酸酯(AESO):工业纯,山东国化化学有限公司;二缩三丙二醇二丙烯酸酯(TPGDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)、环氧丙烯酸酯(EA):分析纯,山东嘉颖化工科技有限公司;光引发剂819 (BAPO):分析纯,上海光易化工有限公司。

    环氧树脂:将DGEBA、MHHPA和EMI-2,4分别按质量分数为53.5wt%、46.0wt%和0.5wt%在温度60℃下搅拌而成。

    光敏油基树脂:将AESO、TPGDA、TMPTA、EA和BAPO分别按质量分数为37.5wt%、32.5wt%、25.0wt%、5.0wt%和1.0wt%在避光条件下搅拌可得。

    双固化环氧树脂:在避光条件下,按照环氧树脂含量50wt%、光敏油基树脂含量50wt%的比例称取原料,使用真空搅拌脱泡机(TMV-700TT,思迈达智能设备有限公司)对原料进行充分搅拌,基于互穿聚合物原理,使用光固化三维打印机(LD-002H,创想三维公司)对光敏树脂组分进行光固化;待三维打印结束后,将打印好的样品进行脱模处理,使用异丙醇清洗后,将样品放入真空干燥箱(上海一恒,DZF-6030A),采用阶梯固化的方式对环氧树脂组分进行热固化,在140℃、150℃和160℃按顺序分别加热1 h后,再在150℃和140℃按顺序分别加热1 h。

    回收树脂:使用BJ-150粉碎机(拜杰)对样品进行预处理,得到粒径较大的颗粒,随后使用XL-30C超微粉碎机(杭州旭众)对样品进行二次处理。使用282 μm和125 μm孔径的筛网,分别将粉碎后的回收颗粒分类为大粒径(L)和小粒径(S)。回收树脂是在220℃下以5 MPa、10 MPa和15 MPa的热压压强下热处理3 h制得。实验过程示意图如图1所示。

    图  1  双固化环氧树脂的制备与回收过程
    Figure  1.  Preparation and recovery process of dual-curing epoxy resin

    采用瑞士Leica DMI8显微镜观测了回收树脂颗粒形貌,使用SEM (Apreo 2C,赛默飞公司)观测了回收树脂的断面形貌;采用美国Perkin Elmer公司PE Spectrum 400型傅里叶变换红外光谱仪进行测试,KBr压片,室温,在400~4000 cm−1范围内进行数据采集,扫描次数为32次;采用微机控制电子万能试验机(菱悦精密仪器,503B)分别按照GB/T 9341—2008[33]和GB/T 1040.2—2006[34]对试样进行弯曲强度和拉伸强度测试;使用德国Novocontrol公司Concept 80宽频介电谱仪对双固化环氧树脂的介电性能进行测试,试样尺寸为20 mm×20 mm×1 mm,测试频率范围为10−1~106 Hz,测试前需将试样在60℃的真空环境下干燥24 h,以排除试样吸收的水分对介电性能的影响;按照GB/T 1408.1—2016[35]对试样进行工频交流击穿试验,采用100 kV的试验变压器,选用球-球电极在矿物油中进行工频交流击穿试验,以防止试验发生沿面闪络,重复测试15次,采用威布尔分布进行分析。

    L粒径颗粒与S粒径颗粒的微观、宏观形貌及粒径分布如图2所示。比较L粒径和S粒径的微观形貌可得,粒径越小,颗粒越不均匀,形状越不规则。对两种粒径大小的回收颗粒进行了粒径分析,由粒径分布可知,S回收颗粒的粒径均小于350 μm,约65%的S颗粒粒径在90~210 μm之间;L回收颗粒的粒径小于840 μm,大约有80%的颗粒处于200~500 μm之间,可以得出,L回收颗粒的粒径相比于S回收颗粒分布范围更加集中。

    图  2  大粒径(L)回收颗粒(a)和小粒径(S)回收颗粒(b)的宏观、微观形貌和粒径分布
    Figure  2.  Macro, micro morphology and size distribution of the large (L) (a) and small (S) (b) particles

    回收机制如图3所示,本质为酯键的动态交换反应,该反应涉及交联网络中的羟基和酯键。在高压下,粉末颗粒间的间隙逐渐缩小,高温使双固化环氧树脂内部的酯键、羟基呈现活跃态,高分子链段热运动加剧,此时,羟基会对与其相近的酯键上羰基进行亲核攻击,旧酯键中醚键断裂、羟基脱氢与羰基碳形成新的醚键,最终形成新的羟基和酯键[36-38]。三维交联网络中酯键不断断裂-重组,使接触界面的分子链相互“焊接”,形成了界面愈合的现象,体现出双固化环氧树脂可回收、再加工的“塑性”性能。

    图  3  双固化环氧树脂的回收机制
    Figure  3.  Recovery mechanism of dual-curing epoxy resin

    探究了热压压强为15 MPa时L粒径和S粒径树脂颗粒不同愈合阶段的界面微观形貌,如图4所示,初始态的S树脂颗粒间无明显接触且独立分布,随着温度、热压压强施加,颗粒发生形变,使颗粒表面相互接触,这是由于颗粒间提供了动态交换位点,引起了网络重组,从而引发树脂颗粒间的界面愈合。在中间态时,颗粒间还存在着未愈合的界面,可观察到较多的空隙及缺陷,在最后阶段,颗粒间的空隙逐渐消失,界面键合较完整,界面的愈合程度逐渐升高。L树脂颗粒从初始态到最后阶段颗粒间的空隙逐渐减少,但仍存在明显的树脂颗粒界面缺陷。

    图  4  双固化环氧树脂的热压回收过程
    Figure  4.  Recovery process of dual-curing epoxy resin by hot pressing

    为探究双固化环氧树脂的固化过程,使用傅里叶变换红外光谱仪对试样进行测试,图5(a)为双固化环氧树脂不同固化阶段的傅里叶变换红外光谱。观察发现,经过光固化后,双固化环氧树脂在1635 cm−1处的C=C特征吸收峰和1407 cm−1处的乙烯基(—C—H)伸缩振动吸收峰消失,而位于912 cm−1处的环氧基(C—O—C)特征吸收峰依旧存在;在经过热固化后,双固化环氧树脂的C—O—C特征吸收峰消失,说明了双固化环氧树脂中光敏树脂的C=C仅参与了光固化反应,环氧树脂的C—O—C仅参与了热固化反应,光、热固化反应独立且充分发生。

    图  5  双固化环氧树脂固化过程(a)与回收过程(b)的FTIR图谱及树脂回收后的DSC测试(c)
    Figure  5.  FTIR spectra of dual-curing epoxy resin at different curing stages (a) and before and after recycling (b), DSC of the dual-curing epoxy resins after recycling (c)

    探究了双固化环氧树脂回收前后交联网络结构变化,以S粒径树脂颗粒在15 MPa热压压强下回收为例,图5(b)为其回收前后的傅里叶变换红外光谱,观察发现,1733 cm−1处为酯键中羰基的伸缩振动吸收峰,羟基的伸缩振动吸收峰在3450 cm−1处,回收前后特征峰值基本一致,表明经过热压之后双固化环氧树脂的交联网络化学结构没有发生明显变化。

    树脂固化未完全会促进树脂颗粒的界面愈合,为排除这种影响,测试了双固化环氧树脂的热流随温度变化曲线,如图5(c)所示。观察发现,双固化环氧树脂在50~300℃温度下没有放热峰出现,表明双固化环氧树脂已经完全固化。

    图6为两种回收树脂颗粒在不同热压压强下的弯曲强度和拉伸强度。由图可知,双固化环氧树脂的弯曲强度为85 MPa,拉伸强度为51 MPa,其拉伸强度在上述文献[16-19, 22-24, 28-29]的比较中具有较强的优越性,相应数值比较如表1所示,一定程度上说明了双固化环氧树脂的力学性能良好。

    图  6  双固化环氧树脂回收前后弯曲强度(a)和拉伸强度(b)
    Figure  6.  Bending strength (a) and tensile strength (b) of the dual-curing epoxy resin before and after recycling
    表  1  不同文献中的拉伸强度比较
    Table  1.  Comparison of the tensile strength among the different literature
    Recyclable polymer Catalyst Tensile strength/
    MPa
    Ref.
    EP Yes 12.0 [16]
    60 Yes 10.3 [17]
    EC-30 Yes 9.9 [18]
    2.5%Zn-PAM/ER Yes 28.0 [19]
    M-4 Yes 7.0 [22]
    HBE-1/SA No 47.0 [23]
    P-VDNET No 41.0 [24]
    Dual dynamic vitrimer Yes 1.6 [28]
    EPTMP/APDS Yes 2.0 [29]
    15 MPa-S particle No 51.0 This article
    Notes:EP—Epoxy polymer; 60—60wt% monoepoxide content in prepolymer; EC-30—30wt% esilica-cross-linked composites; 2.5%Zn-PAM/ER—2.5wt%Zn(OAc)2 content in poly(acrylonitrile-co-zinc methacrylate) epoxy polymer; M-4—4mol% catalyst-loading polymer; HBE-1/SA—Polymer cured by hyperbranched epoxy and succinic anhydride; P-VDNET—Schiff base cross-linked networks; EPTMP/APDS—Epoxy polymer cured by 4-aminophenyl disulfide.
    下载: 导出CSV 
    | 显示表格

    随着热压压强的逐渐增加,回收树脂的弯曲强度和拉伸强度逐渐增大,L树脂颗粒在15 MPa的热压压强下回收的弯曲强度和拉伸强度相比于5 MPa时分别提升了73.2%和76.7%,S树脂颗粒在15 MPa的热压压强下回收的弯曲强度和拉伸强度相比于5 MPa时分别提升了21.8%和76.7%,S树脂颗粒回收后的力学性能要远大于L树脂颗粒回收后的力学性能,在15 MPa的热压压强下,S树脂颗粒相比于L树脂颗粒的弯曲强度要高63.7%,拉伸强度要高68.2%;相比于回收前,在15 MPa的热压压强下S树脂颗粒在弯曲强度上恢复了92.0%,在拉伸强度上恢复了93.7%。

    图7为S和L粒径回收树脂颗粒在相应热压压强下回收后的断面形貌。由图可知,S粒径回收树脂颗粒在5 MPa的热压压强下断面形貌有较强的颗粒感,随着热压压强的升高,断面形貌的颗粒感下降,且逐渐变得较均匀,宏观上样品由不透明的米黄色变为了接近透明的棕红色,如图7(a)~7(c)所示;L粒径回收颗粒在15 MPa下断面形貌仍然有明显的缺陷,样品在宏观上呈现出不均匀的形态,如图7(d)所示。

    图  7  双固化环氧回收树脂断面形貌
    Figure  7.  Sectional morphology of dual-curing epoxy recovery resin

    图8为双固化环氧树脂回收前后的介电常数随频率变化曲线,由图可知,双固化环氧树脂的介电常数较小,约为5.2;无论是L粒径还是S粒径回收树脂相比于回收前介电常数均降低,这是由于回收树脂相比于回收前其基体内部可能存在孔隙,使空气得以进入基体,导致回收树脂介电常数下降。

    图  8  双固化环氧树脂回收前后的介电常数
    Figure  8.  Dielectric constant of dual-curing epoxy resin before and after recycling

    在工频下,L粒径回收树脂在5 MPa时介电常数约为3.9,相比于回收前(约5.2)下降了约25.0%,在15 MPa时介电常数(约4.5)下降了约13.5%,S粒径回收树脂在5 MPa时的介电常数要高于L粒径回收树脂,约为4.7,相比于回收前下降了约9.6%,在15 MPa时介电常数(约5.1)与回收前基本相当;随着热压压强的提升,回收树脂的介电常数会逐渐升高,原因是内部的孔隙在热压作用下逐渐被消除,在工频下,L粒径回收树脂当热压压强从5 MPa提升至15 MPa时其介电常数提升了15.4%,S粒径回收树脂提升了8.5%。

    图9为回收树脂介电损耗随频率变化曲线,由图可得,双固化环氧树脂的介电损耗较小,约为0.01;由图9(a)可知,低频下L粒径回收树脂的介电损耗极高,在热压压强为5 MPa时回收树脂介电损耗高于0.4,原因是基体内部存在大量的缺陷。随着热压压强的升高,低频下介电损耗大幅度降低,在15 MPa下介电损耗为0.075,相比于5 MPa时降低了近81.7%,但仍然处于较高的水平;在中频和高频段回收树脂的介电损耗与回收前的介电损耗差距随着频率升高而减小,但仍然高于回收前的介电损耗。

    图9(b)可知,S粒径回收树脂的介电损耗基本在0.03以内,远低于L粒径回收树脂,低频下5 MPa时S粒径回收树脂的介电损耗约为0.03,在15 MPa时介电损耗降低至0.015,降幅约50%,仅比回收前高0.005;在中频和高频下基本与回收前的介电损耗相差不大。与近几年可回收树脂的相关研究报道[25, 30-32]进行对比后可得,本文所报道的可回收环氧树脂介电损耗最低,一定程度上说明了该树脂的介电性能良好,见表2

    图  9  双固化环氧树脂回收前后的介电损耗
    Figure  9.  Dielectric loss of dual-curing epoxy resin before and after recycling

    图10为双固化环氧树脂回收前后的击穿强度,由图可知,回收前双固化环氧树脂的击穿强度较好,约为30.57 kV·mm−1,随着热压压强的升高,L粒径回收树脂击穿强度的尺寸参数和形状参数略有提升,说明L粒径回收树脂的击穿强度和其数值的稳定性均有小幅度提高,但远低于回收前树脂的击穿强度,这是由于内部孔隙的绝缘强度远低于树脂,放电优先从孔隙处发生,对树脂的击穿强度影响较大,在热压压强为15 MPa时L粒径回收树脂的击穿强度为22.29 kV·mm−1,相比于回收前树脂的击穿强度恢复率达到72.9%;S粒径回收树脂击穿强度的尺寸参数和形状参数均有大幅度提升,也说明了S粒径回收树脂的击穿强度和其数值的稳定性均有大幅度提升,在15 MPa时S粒径回收树脂的击穿强度虽然在稳定性上与回收前有着不小的差距,但是尺寸参数(30.08 kV·mm−1)接近于回收前的树脂,恢复率达到98.4%。

    图  10  双固化环氧树脂回收前后的击穿强度
    Figure  10.  Breakdown strength of dual-curing epoxy resin before and after recycling
    表  2  不同文献中介电损耗比较
    Table  2.  Comparison of the dielectric loss among the different literature
    Recyclable polymer Dielectric loss
    before recycling
    Dielectric loss
    after recycling
    Ref.
    HEP-2-2 0.047 [25]
    UV-E-S 0.125 0.9 [30]
    PDMS-3 0.05 0.055 [31]
    C6 0.02 [32]
    15 MPa-S particle 0.01 0.015 This article
    Notes: HEP-2-2—Molar ratio of hydrogenated bisphenol A epoxy and amine is 2∶2; UV-E-S—Photo/thermal dual cured resin with disulfide bond; PDMS-3—Silicone with dynamic hindered urea bonds; C6—Six carbons between cross-link junctions.
    下载: 导出CSV 
    | 显示表格

    (1)双固化环氧树脂的光、热固化反应独立且充分;经过热压之后双固化环氧树脂的交联网络化学结构没有发生明显变化;双固化环氧树脂已经完全固化,不会影响愈合过程;

    (2)较高的压力有利于缩小颗粒间距离,较小的树脂颗粒具有更大的比表面积,有利于颗粒间界面充分接触,两者协同增强了树脂颗粒界面愈合,进而增强其回收性能;

    (3)回收前双固化环氧树脂的力学性能良好;当热压压强为15 MPa时小粒径(S)树脂颗粒力学性能恢复效果较优,在弯曲强度上恢复了92.0%,在拉伸强度上恢复了93.7%;

    (4)回收前双固化环氧树脂的介电性能良好;当热压压强为15 MPa时S树脂颗粒介电性能较优,工频下介电常数约为5.1,介电损耗约为0.015,与回收前相差不大;

    (5)回收前双固化环氧树脂的击穿强度良好;当热压压强为15 MPa时S树脂颗粒击穿强度恢复效果较优,恢复率达到98.4%。

  • 图  1   双固化环氧树脂的制备与回收过程

    Figure  1.   Preparation and recovery process of dual-curing epoxy resin

    图  2   大粒径(L)回收颗粒(a)和小粒径(S)回收颗粒(b)的宏观、微观形貌和粒径分布

    Figure  2.   Macro, micro morphology and size distribution of the large (L) (a) and small (S) (b) particles

    图  3   双固化环氧树脂的回收机制

    Figure  3.   Recovery mechanism of dual-curing epoxy resin

    图  4   双固化环氧树脂的热压回收过程

    Figure  4.   Recovery process of dual-curing epoxy resin by hot pressing

    图  5   双固化环氧树脂固化过程(a)与回收过程(b)的FTIR图谱及树脂回收后的DSC测试(c)

    Figure  5.   FTIR spectra of dual-curing epoxy resin at different curing stages (a) and before and after recycling (b), DSC of the dual-curing epoxy resins after recycling (c)

    图  6   双固化环氧树脂回收前后弯曲强度(a)和拉伸强度(b)

    Figure  6.   Bending strength (a) and tensile strength (b) of the dual-curing epoxy resin before and after recycling

    图  7   双固化环氧回收树脂断面形貌

    Figure  7.   Sectional morphology of dual-curing epoxy recovery resin

    图  8   双固化环氧树脂回收前后的介电常数

    Figure  8.   Dielectric constant of dual-curing epoxy resin before and after recycling

    图  9   双固化环氧树脂回收前后的介电损耗

    Figure  9.   Dielectric loss of dual-curing epoxy resin before and after recycling

    图  10   双固化环氧树脂回收前后的击穿强度

    Figure  10.   Breakdown strength of dual-curing epoxy resin before and after recycling

    表  1   不同文献中的拉伸强度比较

    Table  1   Comparison of the tensile strength among the different literature

    Recyclable polymer Catalyst Tensile strength/
    MPa
    Ref.
    EP Yes 12.0 [16]
    60 Yes 10.3 [17]
    EC-30 Yes 9.9 [18]
    2.5%Zn-PAM/ER Yes 28.0 [19]
    M-4 Yes 7.0 [22]
    HBE-1/SA No 47.0 [23]
    P-VDNET No 41.0 [24]
    Dual dynamic vitrimer Yes 1.6 [28]
    EPTMP/APDS Yes 2.0 [29]
    15 MPa-S particle No 51.0 This article
    Notes:EP—Epoxy polymer; 60—60wt% monoepoxide content in prepolymer; EC-30—30wt% esilica-cross-linked composites; 2.5%Zn-PAM/ER—2.5wt%Zn(OAc)2 content in poly(acrylonitrile-co-zinc methacrylate) epoxy polymer; M-4—4mol% catalyst-loading polymer; HBE-1/SA—Polymer cured by hyperbranched epoxy and succinic anhydride; P-VDNET—Schiff base cross-linked networks; EPTMP/APDS—Epoxy polymer cured by 4-aminophenyl disulfide.
    下载: 导出CSV

    表  2   不同文献中介电损耗比较

    Table  2   Comparison of the dielectric loss among the different literature

    Recyclable polymer Dielectric loss
    before recycling
    Dielectric loss
    after recycling
    Ref.
    HEP-2-2 0.047 [25]
    UV-E-S 0.125 0.9 [30]
    PDMS-3 0.05 0.055 [31]
    C6 0.02 [32]
    15 MPa-S particle 0.01 0.015 This article
    Notes: HEP-2-2—Molar ratio of hydrogenated bisphenol A epoxy and amine is 2∶2; UV-E-S—Photo/thermal dual cured resin with disulfide bond; PDMS-3—Silicone with dynamic hindered urea bonds; C6—Six carbons between cross-link junctions.
    下载: 导出CSV
  • [1] 刘美琦. 电气化交通辅助逆变电源用LCC逆变器及其控制研究[D]. 长沙: 湖南大学, 2022.

    LIU Meiqi. Research on LCC inverter and its control for electrified transportation auxiliary inverter[D]. Changsha: Hunan University, 2022(in Chinese).

    [2] 王洪苹, 胡燕祝, 庄育锋, 等. 电气化交通路网的脆弱性分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1584-1597.

    WANG Hongping, HU Yanzhu, ZHUANG Yufeng, et al. Analyzing the vulnerability of electrified transportation road networks[J]. Journal of Tsinghua University (Science & Technology), 2023, 63(10): 1584-1597(in Chinese).

    [3] 徐贺, 包贤哲, 王连杰, 等. 电气化交通中的微型燃机及其电能变换技术综述[J]. 电气工程学报, 2022, 17(2): 2-18.

    XU He, BAO Xianzhe, WANG Lianjie, et al. Overview of micro-gas turbines in electrified transportation and their electric energy conversion technology[J]. Jounal of Electrical Engineering, 2022, 17(2): 2-18(in Chinese).

    [4]

    LI Q, DU B, KONG X. Effect of extremely cold weather and shrinkage stress on interfacial discharge between epoxy and silicone rubber in HV cable terminations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(5): 2386-2393. DOI: 10.1109/TDEI.2023.3266308

    [5]

    HUANG J, YE Z, ZHANG G, et al. Study on a 110 kV combined prefabricated joint fault caused by premature failure of grounding grid[J]. Engineering Failure Analysis, 2022, 141: 106701. DOI: 10.1016/j.engfailanal.2022.106701

    [6]

    WU Z, LIN B, FAN J, et al. Effect of dielectric relaxation of epoxy resin on dielectric loss of medium-frequency transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(5): 1651-1658. DOI: 10.1109/TDEI.2022.3193652

    [7]

    FANG Z, YANG X, ZENG H, et al. Research on the performance of green and environmentally friendly epoxy resin impregnated paper 110 kV current transformer[J]. AIP Advances, 2023, 13(8): 085120. DOI: 10.1063/5.0166166

    [8]

    QIAN Z, LIU Y, LIU C, et al. Design and skid resistance evaluation of skeleton-dense epoxy asphalt mixture for steel bridge deck pavement[J]. Construction and Building Materials, 2016, 114: 851-863. DOI: 10.1016/j.conbuildmat.2016.03.210

    [9]

    ALAMRI M, LU Q. Investigation on the inclusion of reclaimed diluted epoxy asphalt pavement materials into hot mix asphalt[J]. Construction and Building Materials, 2022, 361: 129710. DOI: 10.1016/j.conbuildmat.2022.129710

    [10]

    KONDRATENKO Y A, GOLUBEVA N K, KOCHINA T A, et al. Field tests of protective epoxy coatings in a humid tropical climate[J]. Glass Physics and Chemistry, 2023, 49(1): 69-74. DOI: 10.1134/S1087659622600818

    [11]

    KONDRATENKO Y A, GOLUBEVA N K, IVANOVA A G, et al. Improvement of the physicomechanical and corrosion-protective properties of coatings based on a cycloaliphatic epoxy matrix[J]. Russian Journal of Applied Chemistry, 2021, 94(11): 1489-1498. DOI: 10.1134/S1070427221110045

    [12]

    TÜREL T, TOMOVIĆ Ž. Chemically recyclable and upcyclable epoxy resins derived from vanillin[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8308-8316.

    [13]

    RASHID M A, ZHU S, ZHANG L, et al. High-performance and fully recyclable epoxy resins cured by imine-containing hardeners derived from vanillin and syringaldehyde[J]. European Polymer Journal, 2023, 187: 111878. DOI: 10.1016/j.eurpolymj.2023.111878

    [14]

    JIANG Y, WANG S, DONG W, et al. High-strength, degradable and recyclable epoxy resin based on imine bonds for its carbon-fiber-reinforced composites[J]. Materials, 2023, 16(4): 1604. DOI: 10.3390/ma16041604

    [15]

    LI H, LI S, LI Q, et al. Universal, mechanically robust and self-healing superhydrophobic coatings enabled by covalent adaptable networks of disulfide bonds[J]. Progress in Organic Coatings, 2023, 175: 107362. DOI: 10.1016/j.porgcoat.2022.107362

    [16]

    YANG Z, WANG Q, WANG T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21691-21699.

    [17]

    ZHAO S, ABU-OMAR M M. Catechol-mediated glycidylation toward epoxy vitrimers/polymers with tunable properties[J]. Macromolecules, 2019, 52(10): 3646-3654. DOI: 10.1021/acs.macromol.9b00334

    [18]

    LIU Y, TANG Z, CHEN Y, et al. Engineering of β-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2992-3001.

    [19]

    NIU X, WANG F, LI X, et al. Using Zn2+ ionomer to catalyze transesterification reaction in epoxy vitrimer[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5698-5706.

    [20]

    JIANG Y, RAN Z, WU Y, et al. Reversible fluorescent adhesives based on covalent adaptable networks with dynamic AIE crosslinking: In situ visualization of adhesion capability[J]. Chemical Communications, 2023, 59(83): 12423-12426.

    [21]

    SUN J, LIANG M, YIN L, et al. Interfacial compatibility of core-shell cellulose nanocrystals for improving dynamic covalent adaptable networks' fracture resistance in nanohybrid vitrimer composites[J]. ACS Applied Materials & Interfaces, 2023, 15(33): 39786-39796.

    [22]

    SNYDER R L, FORTMAN D J, DE HOE G X, et al. Reprocessable acid-degradable polycarbonate vitrimers[J]. Macromolecules, 2018, 51(2): 389-397. DOI: 10.1021/acs.macromol.7b02299

    [23]

    HAN J, LIU T, HAO C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules, 2018, 51(17): 6789-6799. DOI: 10.1021/acs.macromol.8b01424

    [24]

    JIANG L, TIAN Y, CHENG J, et al. A biomass-based Schiff base vitrimer with both excellent performance and multiple degradability[J]. Polymer Chemistry, 2021, 12(45): 6527-6537. DOI: 10.1039/D1PY01003D

    [25] 孙文杰, 张磊, 李天宇, 等. 基于动态受阻脲键氢化环氧树脂的介电性能与可修复性能[J]. 高电压技术, 2022, 48(7): 2668-2676.

    SUN Wenjie, ZHANG Lei, LI Tianyu, et al. Dielectric and repairable properties of hydrogenated epoxy resin based on dynamic hindered urea bonds[J]. High Voltage Engineering, 2022, 48(7): 2668-2676(in Chinese).

    [26]

    MEMON H, LIU H, RASHID M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules, 2020, 53(2): 621-630. DOI: 10.1021/acs.macromol.9b02006

    [27]

    TIAN P X, LI Y D, WENG Y, et al. Reprocessable, chemically recyclable, and flame-retardant biobased epoxy vitrimers[J]. European Polymer Journal, 2023, 193: 112078. DOI: 10.1016/j.eurpolymj.2023.112078

    [28]

    CHEN M, ZHOU L, WU Y, et al. Rapid stress relaxation and moderate temperature of malleability enabled by the synergy of disulfide metathesis and carboxylate transesterification in epoxy vitrimers[J]. ACS Macro Letters, 2019, 8(3): 255-260. DOI: 10.1021/acsmacrolett.9b00015

    [29]

    LI W, XIAO L, WANG Y, et al. Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy[J]. Polymer Degradation and Stability, 2022, 202: 110039. DOI: 10.1016/j.polymdegradstab.2022.110039

    [30] 张樱凡, 黄正勇, 王浩欢, 等. 可回收和高性能3D打印树脂的制备方法[J]. 高电压技术, 2023, 49(3): 962-970.

    ZHANG Yingfan, HUANG Zhengyong, WANG Haohuan, et al. Preparation of recyclable and high-performance 3D printing resins[J]. High Voltage Engineering, 2023, 49(3): 962-970(in Chinese).

    [31]

    SUN W, LUO J, ZHANG L, et al. Insulating silicones based on dynamic hindered urea bonds with high dielectric healability and recyclability[J]. ACS Applied Polymer Materials, 2021, 3(11): 5622-5631. DOI: 10.1021/acsapm.1c00948

    [32]

    SOMAN B, SCHWEIZER K, EVANS C, et al. Fragile glass formation and non-arrhenius upturns in ethylene vitrimers revealed by dielectric spectroscopy[J]. Macromolecules, 2023, 56(1): 166-177. DOI: 10.1021/acs.macromol.2c01657

    [33] 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).

    [34] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).

    [35] 中国国家标准化管理委员会. 绝缘材料 电气强度试验方法 第1部分: 工频下试验: GB/T 1408.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Insulating materials—Test methods for electric strength—Part 1: Test at power frequencies: GB/T 1408.1—2016[S]. Beijing: China Standards Press, 2006(in Chinese).

    [36]

    CHEN Z. Recyclable thermosetting polymers for digital light processing 3D printing[J]. Materials and Design, 2021, 197: 109189. DOI: 10.1016/j.matdes.2020.109189

    [37]

    ZHANG B, KOWSARI K, SERJOUEI A, et al. Reprocessable thermosets for sustainable three-dimensional printing[J]. Nature Communications, 2018, 9(1): 1831. DOI: 10.1038/s41467-018-04292-8

    [38]

    MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. DOI: 10.1126/science.1212648

  • 目的 

    环氧树脂具有优异的绝缘性、高强度及化学稳定性,可在交通电气化建设中广泛应用于电缆接头与终端、变压器、路面材料及防护涂层等方面。然而传统环氧树脂在固化交联后难以回收、有效降解和再生利用,造成了严重的资源浪费和环境污染。本文构建了含有动态共价键的环氧树脂,在无催化剂的高温高压环境下实现了环氧树脂的回收。

    方法 

    采用光敏油基树脂和环氧树脂构筑光-热双固化树脂,交联体系中含有大量酯键和羟基,得到性能优异双固化环氧树脂,然后对粉碎的不同粒径的树脂颗粒进行热压回收。该方法主要基于酯交换原理,高压使破碎颗粒界面充分接触,高温触发酯键与羟基交换反应,进而使界面愈合。

    结果 

    回收前双固化环氧树脂的机械性能良好;当热压压强为15 MPa时S树脂颗粒机械性能恢复效果最佳,在弯曲强度上恢复了92.0%,在拉伸强度上恢复了93.7%; 回收前双固化环氧树脂的介电性能良好;当热压压强为15 MPa时S树脂颗粒介电性能最佳,工频下介电常数约为5.1,介电损耗约为0.015,与回收前相差不大;回收前双固化环氧树脂的击穿强度良好;当热压压强为15 MPa时S树脂颗粒击穿强度恢复效果最佳,恢复率达到98.4%。

    结论 

    双固化环氧树脂的光、热固化反应独立且充分,经过热压之后双固化环氧树脂的交联网络化学结构没有发生明显变化,且双固化环氧树脂已经完全固化,不会影响愈合过程。较小的树脂颗粒具有更大的比表面积,有利于颗粒间界面充分接触,因此,所得回收树脂性能比大粒径树脂颗粒更优异。

图(10)  /  表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  168
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-12-17
  • 录用日期:  2023-12-24
  • 网络出版日期:  2024-01-03
  • 刊出日期:  2024-07-31

目录

/

返回文章
返回