Abstract:
Dyes are extensively utilized in various industries, such as textiles, leather, plastics, and paper, and are currently one of the major sources of water pollution. Dye wastewater is characterized by its complex composition, high toxicity, and significant amounts of organic pollutants and heavy metals, which poses a serious threat to the ecological environment. Consequently, the removal of water-soluble organic dyes from water bodies has become a crucial challenge in wastewater treatment. Wood is a renewable, biodegradable, and environmentally friendly natural material that possesses a well-structured and hierarchically organized multiscale structure, as well as abundant pore structures. This porous hierarchical structure serves as a natural basis for the creation of new materials and devices intended for removing dyes. The physicochemical adsorption and catalytic degradation of dyes by wood-based composites can be promoted by loading active substances such as graphene, metal-organic frame (MOF), noble metal nanoparticles (Ag, Au, Pd) and polyoxometalates on the surface of the internal lumen of the wood, which can lead to the effective removal of dyes from wastewater. In this paper, the characteristics of dye wastewater and its hazards are firstly outlined, and the special microstructure of wood and its advantages in dye wastewater treatment are introduced in detail. Subsequently, the principles and research status of wood-based porous materials loaded with active substances for the two treatments of adsorption and catalytic degradation of dye wastewater are overviewed, and the future development prospects of wood-based porous materials for the treatment of dye wastewater are also prospected and summarized.