Effects of resin coating and seawater immersion on mechanical performance of basalt textile reinforced seawater sea sand concrete
-
摘要: 为了研究不同树脂(环氧树脂、呋喃树脂、乙烯基树脂)涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土(BTR-SSC)力学性能的影响,采用万能试验机对各树脂涂层纤维束和海水浸泡不同时间下BTR-SSC试件进行静态拉伸试验,并通过拔出试验评估纤维-基体界面粘结性能。结合数字图像相关分析得到裂纹与应变分布,并采用扫描电镜分析损伤机制。通过界面粘结强度计算公式实现以裂纹分布和基体强度评估界面长期性能。结果表明:3种树脂对纤维束的增强效果显著且相近(32%左右),均可显著提升BTR-SSC力学性能,乙烯基树脂涂层表现最佳,抗拉性能和界面粘结性能分别提升77%和180%。海水浸泡下BTR-SSC试件力学性能明显劣化,未处理试件仅高温浸泡14天后便脆断,环氧树脂、呋喃树脂和乙烯基树脂涂层试件浸泡7天时相对未处理试件抗拉强度分别提升81%、48%和94%,浸泡28天时仍呈多裂缝开展,界面粘结性能分别损失64%、57%和55%。该成果将有助于提升BTR-SSC在海洋环境中长期性能并促进其在海工结构中的应用。Abstract: In order to study the effects of different resin (epoxy resin, furan resin, vinyl resin) coatings and seawater immersion on the mechanical properties of basalt textile reinforced seawater sea sand concrete (BTR-SSC), a universal testing machine was used to perform static tensile tests on the fiber yarns of each resin coating and the BTR-SSC specimens immersed in seawater for different time, and the fiber-matrix interface bonding performance was evaluated by pull-out test. The crack and strain distribution were obtained by digital image correlation analysis, and the damage mechanism was analyzed by scanning electron microscopy. The long-term performance of the interface was evaluated by crack distribution and matrix strength through the calculation formula of interface bond strength. The results show that the reinforcing effects of the three resins on the fiber yarns are significant and similar (around 32%), which could significantly improve the mechanical properties of BTR-SSC. The vinyl resin coating had the best performance, and the tensile properties and interfacial bonding properties are increased by 77% and 180%, respectively. The mechanical properties of BTR-SSC specimens are significantly degraded under seawater immersion. The untreated specimens are brittle after 14 days of high temperature immersion. The tensile strength of epoxy resin, furan resin and vinyl resin coated specimens increase by 81%, 48% and 94% respectively after 7 days of immersion compared with untreated specimens. After 28 days of immersion, there are still multiple cracks developed, and the interfacial bonding properties are lost by 64%, 57% and 55%, respectively. The results will help to improve the long-term performance of BTR-SSC in the marine environment and promote its application in marine structures.
-
-
表 1 玄武岩纤维丝的物理及力学性能参数
Table 1 Physical and mechanical parameters of basalt fiber filaments
Type Specification Tensile strength/MPa Elastic modulus/GPa Elongation/% Diameter/μm Basalt fiber (BF) 3 K 1650 85 3 12 表 2 树脂的物理及力学性能参数
Table 2 Physical and mechanical parameters of resins
Type Model Initial viscosity after mixing/(mPa·s) Tensile strength/
MPaBreaking
Elongation/%Mass ratio Resin∶Curing agent∶
AcceleratorEpoxy resin JN-LS 70 46 8 100∶40 Vinyl resin CHEMPULSE 901 350±100 76-90 5-6 100∶1.2∶0.2 Furan resin GM-2 200±100 5-15 3-4 100∶2 表 3 海水海砂混凝土配合比(kg/m3)
Table 3 Mix proportion of the seawater sea sand concrete (kg/m3)
Water-binder ratio Cement Fly ash Seawater Sea sand (0-1.2 mm) Defoamer Superplasticizer Suspension stabilizer 0-0.6 mm 0.6-1.2 mm 0.37 643 161 299 364 728 1.6 1.45 0.4 表 4 人工海水的化学组成
Table 4 Chemical composition of artificial seawater
Solvent Concentration/(g·L−1) NaCl 24.530 MgCl2 5.200 Na2SO4 4.090 CaCl2 1.160 KCl 0.695 NaHCO3 0.201 表 5 不同树脂涂层玄武岩纤维束抗拉力学性能参数
Table 5 Tensile mechanical performance parameters of basalt fiber yarns with different resin coatings
Specimen Ultimate load/N Tensile strength/MPa Ultimate strain/% CG 331.4(8.4) 1077 (27)3.17(0.12) ER 456.5(13.3) 1484 (43)4.23(0.12) FR 434.1(6.6) 1411 (22)4.04(0.17) VR 426.3(6.5) 1385 (21)4.09(0.03) Note: The values in the parentheses are standard deviations. 表 6 不同海水浸泡时间下不同树脂涂层BTR-SSC抗拉力学性能参数
Table 6 Tensile mechanical performance parameters of BTR-SSC with different resin coatings immersed in seawater for different time
Specimen Immersion time/d First crack stress/MPa Tensile strength/MPa Strength retention rate/% Peak strain/% Toughness/MPa Crack number Crack spacing/mm CG-0 0 3.79(0.68) 4.86(0.26) — 0.58(0.36) 0.036(0.010) 3.3(0.5) 34(9) ER-0 3.85(0.51) 7.82(0.25) — 1.71(0.11) 0.096(0.010) 6(0) 20(1) FR-0 3.30(0.25) 6.35(0.54) — 1.26(0.29) 0.063(0.017) 6(0) 20(1) VR-0 4.44(0.34) 8.61(0.56) — 1.77(0.35) 0.109(0.025) 7.3(0.6) 16(2) CG-7 7 2.66(0.61) 2.72(0.52) 56 0.12(0.16) 0.006(0.001) 1.3(0.6) 34(0) ER-7 3.39(1.00) 4.93(0.02) 63 0.78(0.12) 0.031(0.007) 3(0) 34(5) FR-7 2.61(0.27) 4.02(0.18) 63 0.45(0.13) 0.018(0.001) 3(1) 29(5) VR-7 2.88(1.42) 5.28(0.40) 61 1.32(0.10) 0.051(0.008) 3.7(0.6) 33(5) CG-14 14 3.26(0.59) 3.26(0.59) Brittle failure 0.04(0.02) 0.001(0.001) 1(0) — ER-14 3.31(0.17) 4.57(0.56) 58 0.88(0.14) 0.035(0.007) 3.7(0.6) 33(4) FR-14 3.38(0.43) 3.54(0.23) 56 0.23(0.18) 0.011(0.004) 2(1) 48(14) VR-14 3.14(0.71) 4.90(0.23) 57 1.09(0.25) 0.044(0.006) 5(1) 23(2) CG-28 28 2.99(0.46) 2.99(0.46) Brittle failure 0.03(0.00) 0.001(0.000) 1(0) — ER-28 2.81(0.27) 3.93(0.54) 50 0.70(0.44) 0.033(0.017) 3.3(1.2) 39(14) FR-28 2.37(0.55) 2.91(0.12) 46 0.31(0.09) 0.010(0.002) 3(1) 32(11) VR-28 2.49(0.78) 4.02(0.61) 47 0.94(0.14) 0.029(0.004) 4.7(1.2) 25(5) Note: The values in the parentheses are standard deviations. 表 7 不同树脂涂层玄武岩纤维束拔出力学性能
Table 7 Pull-out mechanical performance of basalt fiber yarns with different resin coatings
Specimen Pull-out stiffness/(N·mm−1) Ultimate pull-out force/N τm/MPa Pull-out work/(10−3 J) CG 304(16) 56(3) 1.41 13.3(13.3) ER 253(40) 122(6) 2.23 55.6(2.9) FR 337(30) 119(3) 2.05 71.7(10.8) VR 369(50) 157(1) 2.76 113.1(1.5) Note: τm—Equivalent bond strength. The values in the parentheses are standard deviations. 表 8 不同海水浸泡时间下不同树脂涂层BTR-SSC界面粘结性能计算参数
Table 8 Parameters required for the calculation of interfacial bonding performance of BTR-SSC with different resin coatings immersed in seawater for different time
Specimen σmu/MPa x/mm r/mm Vf/% K1 τs/MPa CG-0 3.8 34 0.313 1.03 1.31 1.71 ER-0 20 0.436 1.84 0.99 2.24 FR-0 20 0.461 2.06 1.05 2.11 VR-0 16 0.453 1.98 0.82 2.69 CG-7 2.9 34 0.313 1.03 1.31 1.28 ER-7 34 0.436 1.84 1.68 0.99 FR-7 29 0.461 2.06 1.52 1.09 VR-7 33 0.453 1.98 1.70 0.98 CG-14 3.3 — 0.313 1.03 — — ER-14 33 0.436 1.84 1.63 1.16 FR-14 48 0.461 2.06 2.52 0.75 VR-14 23 0.453 1.98 1.18 1.60 CG-28 2.7 — 0.313 1.03 — — ER-28 39 0.436 1.84 1.93 0.80 FR-28 32 0.461 2.06 1.68 0.91 VR-28 25 0.453 1.98 1.29 1.20 Notes: σmu—Tensile strength of the matrix; x—Average crack spacing; r—Equivalent radius of fiber yarn; Vf—Fiber volume fraction; K1—Bond strength factor; τs—Shear bonding strength. -
[1] FENG G, ZHU D, GUO S, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 2022, 134: 104758. DOI: 10.1016/j.cemconcomp.2022.104758
[2] YI Y, ZHU D, RAHMAN M Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B: Engineering, 2022, 243: 110115. DOI: 10.1016/j.compositesb.2022.110115
[3] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11): 2631-2641. DOI: 10.13801/j.cnki.fhclxb.20170301.003 ZHU Deju, LI Gaosheng. Effect of short fibers and prestressing on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2631-2641(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20170301.003
[4] DONNINI J, CORINALDESI V, NANNI A. Mechanical properties of FRCM using carbon fabrics with different coating treatments[J]. Composites Part B: Engineering, 2016, 88: 220-228. DOI: 10.1016/j.compositesb.2015.11.012
[5] WILLIAMS PORTAL N, FLANSBJER M, JOHANNESSON P, et al. Tensile behaviour of textile reinforcement under accelerated ageing conditions[J]. Journal of Building Engineering, 2016, 5: 57-66. DOI: 10.1016/j.jobe.2015.11.006
[6] MICELLI F, AIELLO M A. Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments[J]. Composites Part B: Engineering, 2019, 159: 490-501. DOI: 10.1016/j.compositesb.2017.03.005
[7] HRISTOZOV D, WROBLEWSKI L, SADEGHIAN P. Long-term tensile properties of natural fibre-reinforced polymer composites: Comparison of flax and glass fibres[J]. Composites Part B: Engineering, 2016, 95: 82-95. DOI: 10.1016/j.compositesb.2016.03.079
[8] ÖZKAN Ş, DEMIR F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites[J]. Construction and Building Materials, 2020, 263: 120564. DOI: 10.1016/j.conbuildmat.2020.120564
[9] LI Y, ZHANG J, HE Y, et al. A review on durability of basalt fiber reinforced concrete[J]. Composites Science and Technology, 2022, 225: 109519. DOI: 10.1016/j.compscitech.2022.109519
[10] SILVA F D A, BUTLER M, HEMPEL S, et al. Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete[J]. Cement and Concrete Composites, 2014, 48: 26-34. DOI: 10.1016/j.cemconcomp.2014.01.007
[11] MESSORI M, NOBILI A, SIGNORINI C, et al. Mechanical performance of epoxy coated AR-glass fabric textile reinforced mortar: Influence of coating thickness and formulation[J]. Composites Part B: Engineering, 2018, 149: 135-143. DOI: 10.1016/j.compositesb.2018.05.023
[12] ZAMIR M, SRIPADA R, PELED A. Hybrid fillers in carbon-fabric-reinforced cement-based composites[J]. Cement and Concrete Composites, 2019, 98: 113-124. DOI: 10.1016/j.cemconcomp.2019.02.005
[13] GUO S, REN J, YANG T, et al. Influences of surface treatment on the mechanical performances of carbon and basalt textiles-reinforced concretes under harsh environments[J]. Composites Part B: Engineering, 2022, 246: 110195. DOI: 10.1016/j.compositesb.2022.110195
[14] ZHU D, BAI X, YAO Q, et al. Effects of volume fraction and surface coating of textile yarns on the tensile performance of AR-glass textile reinforced concrete[J]. Journal of Building Engineering, 2023, 71: 106420. DOI: 10.1016/j.jobe.2023.106420
[15] BENMOKRANE B, ELGABBAS F, AHMED E A, et al. Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars[J]. Journal of Composites for Construction, 2015, 19(6): 04015008. DOI: 10.1061/(ASCE)CC.1943-5614.0000564
[16] IPAKCHI H, SHEGEFT A, REZADOUST A M, et al. Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites[J]. Iranian Polymer Journal, 2020, 29(4): 287-299. DOI: 10.1007/s13726-020-00793-w
[17] ELDRIDGE A, FAM A. Environmental aging effect on tensile properties of GFRP made of furfuryl alcohol bioresin compared to epoxy[J]. Journal of Composites for Construction, 2014, 18(5): 04014010. DOI: 10.1061/(ASCE)CC.1943-5614.0000467
[18] FILIPPOU C A, CHRYSOSTOMOU C Z. Analytical model for textile reinforced mortar under monotonic loading[J]. Construction and Building Materials, 2020, 258: 120178. DOI: 10.1016/j.conbuildmat.2020.120178
[19] AVESTON J, KELLY A. Theory of multiple fracture of fibrous composites[J]. Journal of Materials Science, 1973, 8(3): 352-362. DOI: 10.1007/BF00550155
[20] ACI Committee 549. Guide to design and construction of externally bonded fabricre inforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures: ACI 549.4R—13[S]. Farmington Hills: American Concrete Institute, 2013.
[21] 徐虹, 张可, 卢岩, 等. 玄武岩纤维-碳纤维混杂平纹织物增强环氧树脂基复合材料的制备与力学性能[J]. 复合材料学报, 2018, 35(4): 767-773. DOI: 10.13801/j.cnki.fhclxb.20170704.001 XU Hong, ZHANG Ke, LU Yan, et al. Preparation and mechanical properties of carbon-basalt hybrid fiber plain fabric reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 767-773(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20170704.001
[22] American Society for Testing and Materials. Standard practice for the preparation of substitute ocean water: ASTM D1141-98(2021)[S]. West Conshohocken: American Society for Testing and Materials Internaitional, 1998.
[23] 朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1): 322-334. DOI: 10.13801/j.cnki.fhclxb.20210306.002 ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 322-334(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210306.002
[24] 中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362—2017 [S]. 北京: 中国标准出版社, 2017. Standardization Administration of the People's Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
[25] YI Y, ZHU D, GUO S, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment[J]. Cement and Concrete Composites, 2020, 113: 103695. DOI: 10.1016/j.cemconcomp.2020.103695
[26] DONG Z, WU G, ZHAO X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 192: 671-682. DOI: 10.1016/j.conbuildmat.2018.10.166
[27] DU Y, ZHANG M, ZHOU F, et al. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading[J]. Construction and Building Materials, 2017, 138: 88-100. DOI: 10.1016/j.conbuildmat.2017.01.083
[28] WEI B, CAO H, SONG S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater[J]. Corrosion Science, 2011, 53(1): 426-431. DOI: 10.1016/j.corsci.2010.09.053
[29] LOPEZ DE VERGARA U, SARRIONANDIA M, GONDRA K, et al. Polymerization and curing kinetics of furan resins under conventional and microwave heating[J]. Thermochimica Acta, 2014, 581: 92-99. DOI: 10.1016/j.tca.2014.02.017
[30] GUO X, XIONG C, JIN Z, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J]. Journal of Building Engineering, 2022, 58: 105038. DOI: 10.1016/j.jobe.2022.105038
-
期刊类型引用(2)
1. 张永文,杨郁,杨倩倩,李艳安,禹兴海. 生物炭/聚乙二醇复合相变材料的制备及其性能研究. 化学工程师. 2024(06): 6-11 . 百度学术
2. 江慧珍,罗凯,王艳,费华,吴登科,叶卓铖,曹雄金. 废弃生物质复合相变材料的构建与应用. 化工进展. 2024(07): 3934-3945 . 百度学术
其他类型引用(6)
-
目的
使用海水海砂制备出满足性能需求的织物增强海水海砂混凝土(TR-SSC)将是实现海水、海砂资源化的一个重要途径。环氧树脂涂层可以有效消除纤维单丝之间的滑移,使纤维束受力更均匀,使更多纤维单丝参与承重作用,可显著提高TRC的抗拉强度、界面黏结强度和韧性,且可在织物表面形成保护层,抑制混凝土内部高碱环境对纤维的腐蚀效应,但是高碱环境会使环氧树脂产生水解反应而逐渐劣化。为此,本文致力于探讨耐碱树脂(呋喃树脂、乙烯基树脂)是否可以替代环氧树脂应用于BTR-SSC。
方法采用万能试验机(MTS C43.304,美国)对各树脂涂层纤维束和海水浸泡不同时间下BTR-SSC试件进行静态拉伸试验,参考 GB/T3362-2017制作单根玄武岩纤维束拉伸试件,由位移控制加载程序,采样频率为 20 Hz,试件加载速率为 2 mm/min。BTR-SSC试件两端粘贴铝片以便连接拉伸夹具(球铰),试件标距100mm。采用引伸计(634.15C-31)测量标距内试件的变形。试件加载速率为 0.5mm/min。采用OSG230-150UM型工业相机记录整个拉伸过程用于进行DIC图像分析,图片采集速率为5帧每秒。并利用MIRA4 LMH型扫描电子显微镜观察老化前后试样中纤维及树脂表面微观形貌特征的变化。通过拔出试验评估纤维-基体界面黏结性能,控制纤维埋置深度为20mm,在纤维束的自由端粘贴0.3mm厚纸片,试验加载速率为 1 mm/min。
结果通过静态拉伸试验和拔出试验探究不同树脂涂层对玄武岩纤维束和BTR-SSC试件力学性能的影响:(1)环氧树脂、呋喃树脂和乙烯基树脂涂层纤维束试件强度增长率分别为37.7%、31.0%和28.6%。(2)乙烯基树脂涂层BTR-SSC试件抗拉强度和韧性分别提高了77%和203%,环氧树脂和呋喃树脂涂层试件抗拉强度分别提高了61%和31%,韧性分别提高了167%和75%。(3)三种树脂均能显著提升界面粘结性能,乙烯基树脂提升了180%,环氧树脂和呋喃树脂分别提升了118%和113%。通过60℃海水浸泡前后的静态拉伸试验探究海水浸泡对不同树脂涂层BTR-SSC试件抗拉力学性能的影响:对照组试件仅浸泡14天后便脆断,三种树脂涂层试件即使在浸泡28天后仍出现多裂缝开展,海水浸泡7天时乙烯基树脂涂层试件相对对照组抗拉强度和韧性分别提高了94%和750%。环氧树脂涂层试件抗拉强度和韧性分别提升了81%和417%。呋喃树脂涂层试件抗拉强度和韧性仅分别提升了48%和200%。以Filippou模型和ACK理论模型为基础,得出界面黏结强度计算公式,实现了以裂纹分布和基体强度变化评估界面长期性能,结果显示浸泡28天后,环氧树脂、呋喃树脂和乙烯基树脂涂层试件界面黏结性能分别损失了64%、57%和55%。采用扫描电镜分析海水浸泡下BTR-SSC力学性能损伤机理:(1)各组试件纤维表面均可以观察到明显的腐蚀产物,但仅在未处理试件纤维表面观察到点蚀现象,且表面几乎完全被腐蚀产物覆盖。三种树脂涂层试件纤维表面腐蚀产物明显少于未处理试件。(2)未浸泡时,乙烯基树脂表面较为粗糙。呋喃树脂表面存在微孔,浸泡28天后,呋喃树脂表面出现明显坑蚀,环氧树脂表面几乎完全水解,而乙烯基树脂表面仅在局部点蚀。
结论三种树脂对纤维束的增强效果显著且相近(32%左右),均可显著提升BTR-SSC力学性能和海水浸泡下长期力学性能,乙烯基树脂涂层表现最佳。以Filippou模型和ACK理论模型为基础,得出了界面黏结强度计算公式,可实现以裂纹分布和基体强度变化评估界面长期性能。BTR-SSC力学性能损失主要是由于纤维的腐蚀和树脂的水解。
-
纤维织物增强混凝土(TRC或FRCM) 是由水泥基材料和多轴向织物组成的一种新型水泥基复合材料,使用海水海砂制备出满足性能需求的纤维织物增强海水海砂混凝土(TR-SSC)将是实现海水、海砂资源化的一个重要途径。但TRC存在织物-基体界面黏结差,纤维单丝间协同能力差的问题,而且纤维的成本和在混凝土内部高碱环境下的腐蚀效应也限制了TRC的应用。而环氧树脂涂层可以有效消除纤维单丝之间的滑移,使纤维束受力更均匀,使更多纤维单丝参与承重作用,可显著提高TRC的抗拉强度、界面黏结强度和韧性,且可在织物表面形成保护层,抑制混凝土内部高碱环境对纤维的腐蚀效应。目前,并没有关于其他种类有机树脂(如乙烯基树脂、呋喃树脂等)涂层应用于TRC的报告。
为此,本研究采用不同类型树脂(环氧树脂、呋喃树脂、乙烯基树脂)对玄武岩纤维进行表面处理,研究树脂涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土(BTR-SSC)力学性能的影响,采用万能试验机对各树脂涂层纤维束和海水浸泡不同时间下BTR-SSC试件进行静态拉伸试验,并通过拔出试验评估纤维-基体界面黏结性能。结合数字图像相关分析得到裂纹与应变分布,并采用扫描电镜分析损伤机理。通过界面黏结强度计算公式实现以裂纹分布和基体强度评估界面长期性能。结果表明:三种树脂对纤维束的增强效果显著且相近(32%左右),均可显著提升BTR-SSC力学性能,乙烯基树脂涂层表现最佳,抗拉性能和界面黏结性能分别提升77%和180%。海水浸泡下BTR-SSC试件力学性能明显劣化,未处理试件仅高温浸泡14d后便脆断,环氧树脂、呋喃树脂和乙烯基树脂涂层试件浸泡7d时相对未处理试件抗拉强度分别提升81%、48%和94%,浸泡28d时仍呈多裂缝开展,界面黏结性能分别损失64%、57%和55%。该成果将有助于提升BTR-SSC在海洋环境中长期性能并促进其在海工结构中的应用。
不同树脂涂层BTR-SSC拉伸应力应变关系曲线
海水浸泡对不同树脂涂层BTR-SSC抗拉强度的影响