Recent advances in applications of graphene aerogel composite materials for electrochemical energy storage
-
摘要: 石墨烯气凝胶作为一种内部互连的三维框架体,在微观和宏观尺度上具有突出的维度特性,成为各种零维、一维、二维和三维材料的理想宿主。其高导电性、高比表面积及高结构稳定性等特点令石墨烯气凝胶在储能领域得到了广泛的应用,特别是在高比容量金属离子电池负极和超级电容器电极等领域。首先,本文对石墨烯前体及气凝胶的处理策略进行整理,介绍当前不同处理方式对石墨烯前体及气凝胶成型影响。其次,根据储能机制的不同,介绍石墨烯气凝胶复合材料在主流储能器件中的改性应用及性能表现。最后,对电化学储能用石墨烯气凝胶复合材料的研究进展进行总结,指出当前存在的挑战并展望未来的研究方向。Abstract: Graphene aerogel has become an ideal host for various zero dimensional, one-dimensional, two-dimensional and three-dimensional materials because of prominent dimensional characteristics in both micro and macro scales with its interconnected three-dimensional framework. The high conductivity, specific surface area and structural stability make it widely used in the field of energy storage in recent years, especially in the application of anodes for metal ion batteries and supercapacitors electrodes with high specific capacity. Firstly, the treatment strategies of graphene precursor and aerogel are sorted out, and the effects of different treatment methods on the formation of graphene precursor and aerogel are introduced. Secondly, according to the different energy storage mechanisms, the modified application and performance of graphene aerogel composites in mainstream energy storage devices are introduced. Finally, the research progress of graphene aerogel composites for electrochemical energy storage are summarized, the current challenges are pointed out and the future research directions are prospected.
-
超高性能混凝土(UHPC)是一种具有高强度、高韧性、高耐久性的水泥基复合材料,与钢筋具有超高的黏结强度[1-2]。UHPC在重载、大跨、抗震、抗爆和抗冲击等结构中具有广阔的应用前景。与钢筋/普通混凝土结构相同,配筋/UHPC结构中存在钢筋连接接长问题,最简便的钢筋连接接长方式是搭接连接,钢筋/UHPC的高黏结强度可以使钢筋的搭接长度大幅缩短,使UHPC得以用于预制装配式桥梁结构[3-4]和建筑结构[5]中预制构件的连接,仅需较小的搭接长度且钢筋无需弯钩锚固,减少了施工的复杂程度和现场湿作业量。另外,Dagenais等[6]还应用UHPC的高黏结性能加固搭接长度不足的钢筋/混凝土结构,取得了良好效果。
采用直接拔出锚固试验是较为常用的研究钢筋/UHPC黏结性能的试验方法。Graybeal[7]将直径为12.7 mm、15.9 mm、19.1 mm的钢筋分别锚固75 mm、100 mm、125 mm于UHPC圆柱体中,均发生钢筋拉断破坏而未出现黏结破坏。Swenty等[8]采用直径为12.7 mm的钢筋锚固于边长为150 mm的立方体试块中,采用两种不同配合比的UHPC,分别实现了钢筋的屈服和拉断。Holschemacher等[9]采用直径为12 mm的钢筋锚固在UHPC圆柱体中,测得黏结强度高达60 MPa。Jungwirth等[10]对直径为20 mm和12 mm的钢筋进行锚固试验,黏结强度分别达到38 MPa和66 MPa。Alkaysi等[11]通过锚固试验研究了UHPC的早期龄期(1天、3天、7天)的黏结强度,结果表明在7天龄期时,可以达到75%的最终黏结强度。Graybeal[12]的试验结果表明:影响UHPC黏结强度的主要因素有保护层厚度、锚固长度和钢筋直径。Bae等[13]通过锚固试验研究发现:钢纤维体积分数由0增加到1%,钢筋与UHPC的黏结强度提高了1倍,由1%增加到2%,黏结强度提高幅度变小。Saleem等[14]研究了高强钢筋在UHPC中锚固长度,结果表明:直径9.5 mm和22.2 mm高强钢筋的锚固长度分别为12倍和18倍的钢筋直径。安明喆等[15]通过钢筋拔出试验,研究了变形钢筋直径和锚固长度对钢筋/活性粉末混凝土(RPC)黏结性能的影响,提出变形钢筋与RPC的极限黏结强度与锚固长度的计算公式。邓宗才等[16]通过54个中心拉拔、6个立方体偏心拉拔、6个棱柱体中心拉拔和6个板式中心拉拔锚固试件系统研究了钢筋埋长、保护层厚度、钢筋直径、RPC强度和钢纤维体积掺量等因素对钢筋/RPC黏结性能的影响规律。贾方方[17]通过5组直接拔出锚固试件研究了不同纤维体积掺量对钢筋/RPC黏结性能的影响,结果表明:纤维体积掺量从0增大到2%,黏结强度逐渐增大。
采用直接拔出锚固试件对钢筋/UHPC黏结性能的研究较为充分,但加载时锚固试件钢筋受拉,周围UHPC受压,与实际结构构件受力不符,锚固试件加载端容易受到约束,限制UHPC的开裂,测得的黏结强度偏高,且目前尚未建立直接拔出锚固黏结与实际搭接黏结的关系,对实际应用指导有限。采用梁式搭接试件研究的钢筋/UHPC黏结性能与实际构件搭接受力最为相符。Dagenais等[6, 18]将UHPC应用于钢筋搭接长度不足的钢筋/混凝土受弯构件的加固中,分别进行了单调和滞回试验研究,研究结果表明钢筋/UHPC的搭接黏结强度约为普通混凝土的两倍,采用UHPC加固过的构件可以适用于地震区。Al-Quraishi等[19]试验了6根梁式钢筋搭接试件,研究了钢筋在UHPC中搭接性能,结果表明UHPC的劈裂是钢筋搭接失效的主要破坏模式。由于梁式搭接试件制作和加载过程较为复杂,研究数量有限。
钢筋搭接对拉拔出试验能较好地反应实际构件的搭接受力,且能简化试验。徐有邻等[20]通过普通混凝土中钢筋搭接对拉拔出试验和梁中搭接钢筋传力对比试验,观察了搭接钢筋的传力机制、受力特征和破坏形态,发现对拉试验与梁中钢筋搭接试验结果基本相符。Graybeal[21]将强度为1 860 MPa的钢绞线在掺加不同纤维的UHPC中搭接,进行了对拉拔出试验,钢筋在掺加钢纤维的UHPC (抗压强度为162 MPa)中所需的搭接长度小于掺加PVA纤维的UHPC (抗压强度为134 MPa)。Lagier等[22]通过钢筋搭接对拉拔出试验研究了纤维体积掺量和搭接长度对搭接性能的影响,通过钢筋内部开槽粘贴应变片研究了钢筋沿搭接长度的应变分布。方志等[23]试验了39个钢筋/RPC搭接对拉拔出试件,发生破坏时,搭接区域的搭接黏结强度随搭接长度增大而略有减小,随RPC强度和配箍率的增大而增大,并研究了钢筋净距对搭接黏结强度的影响,在1倍钢筋直径时黏结强度达到最大。
目前,针对钢筋/UHPC锚固试验的研究较充分,钢筋搭接试验的研究有限,且未建立钢筋/UHPC锚固和搭接之间的关系及指导实际设计的算法。本文进行了21组考虑搭接长度、纤维体积掺量和配箍率影响的钢筋/UHPC搭接对拉拔出试验,3组考虑锚固长度影响的钢筋/UHPC直接拔出锚固试验。研究钢筋锚固和搭接连接试件的破坏形态,分析钢筋搭接黏结强度的影响因素,参考相关文献,拟合得到钢筋/UHPC锚固和搭接试件的平均黏结强度计算公式及锚固和搭接长度计算公式,建立钢筋/UHPC锚固和搭接长度简化算法。
1. 试验概况
1.1 试件设计
设计了21组钢筋/UHPC搭接连接试件,每组3个试件完全相同,试件的主要变化参数有搭接长度、纤维体积掺量和配箍率。采用的钢筋直径为25 mm,搭接长度范围在3d~12d (d为钢筋直径)不等,以期发生多种破坏形态。纤维体积分数取值为2%、3%和4%。箍筋作为一种加强措施,其体积配箍率为0.67%、1.35%和2.25%。试件的截面尺寸为150 mm×150 mm,钢筋净距为10 mm;另外,设计了3组钢筋锚固试件作为对比试件,试件的截面尺寸为115 mm×115 mm,以保证与钢筋搭接连接试件的保护层厚度一致,均为45 mm;为了减轻试件端部对黏结段的影响,采用塑料套管将端部钢筋与UHPC隔离,长度为50 mm,因此,试件的长度为L+2×50 mm (L为搭接长度),试件尺寸如图1所示。试件参数及主要试验结果如表1所示。
试件编号中A和LS分别代表钢筋锚固试件和钢筋搭接连接试件,第2、3、4个符号的数字分别代表纤维体积分数(%)、配箍率(%)和搭接长度。例如:LS-2-0-3d表示钢筋搭接连接试件,纤维体积掺量为2%,配箍率为0,搭接长度为3倍的钢筋直径。
表 1 钢筋锚固和搭接钢筋/UHPC试件参数及试验结果Table 1. Parameters and test results of anchorage and lap-splice steel bars/UHPC specimensNumber Notation Vf/% ρsv/% L fcu/MPa fc/MPa Py/kN Ps/kN Pu/kN τmt/MPa Failure mode 1 A-2-0-3d 2 0 3d 117.1 103.6 — 190.4 197.6 33.6 SPF 2 A-2-0-5d 5d 218.6 265.2 269.5 27.5 SPF 3 A-2-0-7d 7d 220.4 284.6 298.1 21.7 SPF 4 LS-2-0-3d 2 0 3d 117.1 103.6 — 111.9 130.2 22.1 SPF 5 LS-2-0-5d 5d — 143.4 171.8 17.5 SPF 6 LS-2-0-7d 7d — 173.3 208.3 15.1 SPF 7 LS-2-0-8d 2 0 8d 110.1 100.9 219.1 223.4 234.2 14.9 SPF 8 LS-2-0-10d 10d 215.6 246.9 266.0 13.6 SPF 9 LS-2-0-12d 12d 217.6 272.8 293.7 12.5 SPF 10 LS-3-0-8d 3 0 8d 116.6 105.5 217.2 245.8 253.2 16.1 SPF 11 LS-3-0-10d 10d 219.1 265.7 284.8 14.5 SPF 12 LS-3-0-12d 12d 216.3 285.9 298.8 12.7 RF 13 LS-4-0-6d 4 0 6d 112 102 217.1 201.3 224.0 19.0 SPF 14 LS-4-0-8d 8d 215.3 244.9 250.1 16.0 SPF 15 LS-4-0-10d 10d 217.1 276.3 282.2 14.4 SPF 16 LS-2-0.67-6d 2 0.67 6d 110.1 100.9 218.2 164.9 236.6 20.1 SPF 17 LS-2-0.67-8d 8d 218.4 180.5 243.5 15.5 SPF 18 LS-2-0.67-10d 10d 215.8 201.3 292.9 14.94 SPF 19 LS-2-1.35-4d 2 1.35 4d 110.1 100.9 — 122.6 195.3 24.9 SPF 20 LS-2-1.35-6d 6d 218.8 146.6 244.3 20.7 SPF 21 LS-2-1.35-8d 8d 219.4 202.4 304.2 19.4 RF 22 LS-2-2.25-4d 2 2.25 4d 110.1 100.9 — 128.1 206.0 26.2 SPF 23 LS-2-2.25-6d 6d 219.4 167.7 257.9 21.9 SPF 24 LS-2-2.25-8d 8d 214.5 216.0 302.8 19.3 RF Notes: d—Steel bar diameter; Vf—Fibre volume fraction; ρsv—Hoop ratio; L—Embedment length; fcu—Compressive strength of cube; fc—Compressive strength of prism; Py, Ps and Pu—Yield, slippage and peak loads in the test, respectively; τmt—Mean bond strength measured in the test; SPF and RF represent the splitting pull-out failure and steel bar rupture failure, respectively. The “A” and “LS” in notation system—Anchorage specimen and lap-splice specimen, respectively. The figures in the second, third and fourth symbol—Fibre volume fraction (%), stirrup ratio (%) and embedment length, respectively. For example, the notation of “LS-2-0-3d”—Splice specimen with 2% of fibre volume fraction, 0% of stirrup ratio and 3 bar diameters embedment. 1.2 试验材料
1.2.1 UHPC
试验采用的UHPC配合比如表2所示,其中水泥选用P·O42.5级普通硅酸盐水泥;粉煤灰为Ⅰ级粉煤灰;细骨料采用石英砂,粒径范围为0.16~1.25 mm;硅灰选择无定型超细(非晶体)粉末,灰白色球状粉末,比表面积143 100 cm2/g;减水剂为聚羧酸系高效减水剂,减水率为30%,含固量32%;钢纤维选用上海某公司生产的带钩镀铜钢纤维,长度13 mm,直径0.22 mm,抗拉强度大于2 850 MPa。试件采用常温养护,试件成型后24 h拆模,浇水养护14天。
表 2 UHPC配合比Table 2. Mix proportions of UHPCNumber Water to
binder ratioCement Fly
ashSilica
fumeMineral
powderQuartz
sandSuperplasticizer Volume fraction of
steel fiber Vf1 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.02 2 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.03 3 0.18 1.00 0.30 0.30 0.30 1.3 0.05 0.04 每种UHPC配合比制作3个边长为100 mm的立方体试块和3个尺寸为100 mm×100 mm×300 mm的棱柱体试块分别测UHPC的立方体抗压强度(fcu)和棱柱体抗压强度(fc)。
1.2.2 钢筋
锚固和搭接钢筋的强度等级均为HRB400,直径为25 mm,箍筋和架立筋的强度等级为HPB300,直径为8 mm。钢筋力学性能如表3所示。
表 3 钢筋力学性能Table 3. Mechanical properties of steel barsDiameter/mm Strength grade Yield strength/MPa Ultimate strength/MPa 25 HRB400 447 611 18 HRB400 436 608 8 HPB300 364 540 1.3 试验装置及测试内容
钢筋直接拔出锚固试验加载装置如图2(a)所示,钢筋锚固试验在100 t万能试验机上进行,采用位移控制加载,速率为0.5 mm/min。钢筋自由端安装位移计来测量自由端滑移量,通过TDS-530数据采集设备进行力和位移的采集。
钢筋搭接连接试验加载装置如2(b)所示,采用50 t锚杆拉拔仪通过手动加载对钢筋施加拉拔力,通过压力数显表人工读取拉力的大小;通过百分表来测量钢筋自由端与试块的相对滑移量;采用KD7016程控静态应变仪人工读取箍筋的应变。由于钢筋搭接连接试件两根钢筋不同轴,拉拔时会产生弯矩造成试件的转动,试块两侧放置限位钢垫块平衡弯矩。
2. 试验结果与分析
试件加载过程中的最大荷载称为极限荷载Pu,钢筋自由端出现滑移时的荷载称为滑移荷载Ps,屈服荷载Py实际是钢筋发生屈服时的荷载,各荷载值如表1所示。图3为各类型试件的极限荷载随锚固或搭接长度的变化关系,可以发现大部分试件的钢筋均发生屈服,一些试件的极限荷载接近甚至达到钢筋的极限受拉承载力。总体上,试件的极限荷载与钢筋锚固或搭接长度近似呈线性关系。
2.1 钢筋/UHPC锚固或搭接试件破坏模式
图4为钢筋/UHPC 锚固或搭接试件破坏形态。如图所示,本次试验共出现2种破坏模式,分别是劈裂拔出破坏和钢筋拉断破坏,破坏模式主要受搭接长度的影响,搭接长度越大,试件提供的抗拉拔合力越大,越容易发生钢筋拉断破坏。此外,纤维体积掺量和配箍率也对破坏模式有一定的影响。
2.1.1 劈裂拔出破坏
所有的锚固试件和除LS-3-0-12d、LS-2-1.35-8d和LS-2-2.25-8d以外的搭接试件均发生劈裂拔出破坏。
对于发生劈裂拔出破坏未配箍筋的试件,加载初期荷载较小,试件无明显现象;加载至约0.25Pu时试件出现端面放射状裂缝,荷载由钢筋加载端向自由端传递,钢筋与UHPC锚固试件加载端的界面已开始局部滑移,自由端附近界面处于黏结状态;约0.36Pu时,因斜向压肢的推力造成两筋间的分离趋势,引起环向应力,试件出现侧面纵向劈裂裂缝,此时裂缝长度和宽度均较小;随着荷载的增加,裂缝不断延伸且加宽,同时又有新的端面放射状裂缝和侧面纵向裂缝产生,当钢筋自由端出现微小滑移时,各试件滑移荷载在0.83Pu~0.98Pu范围内,此时,加载端到自由端的化学黏结力逐步被削弱、丧失,拉力主要依靠钢筋肋部的机械咬合力与钢筋表面的摩擦力传递,此后荷载增长缓慢,裂缝继续延伸和加宽,钢筋自由端滑移增大;当纵向裂缝即将贯通时,裂缝宽度急剧增大,试件达到极限荷载Pu,发生纵向劈裂拔出破坏。钢筋锚固试件破坏见图4(a),钢筋搭接连接试件破坏见图4(b)。
对于发生劈裂拔出破坏配有箍筋的搭接试件,与未配箍筋的试件相比,其侧面纵向开裂荷载有所提高,约为0.4Pu,滑移荷载在0.60Pu~0.74Pu范围内,钢筋出现滑移后,荷载仍然会有显著的提高;达到Pu时,侧面纵向裂缝宽度增大,但未完全贯通,钢筋自由端滑移加快,钢筋逐渐从UHPC中拔出,如图4(c)所示。箍筋对UHPC的约束作用延迟了纵向裂缝的产生,纵向裂缝出现后,箍筋应变快速增大,产生较大的约束力,限制侧面纵向裂缝的加宽和延伸,达到Pu时侧面纵向裂缝未贯通。
2.1.2 钢筋拉断破坏
试件LS-3-0-12d纤维体积分数为3%,试件LS-2-1.35-8d和LS-2-2.25-8d的体积配箍率分别为1.35%和2.25%,三组试件均发生钢筋拉断破坏。与劈裂拔出破坏相比,加载初期试件端部也出现放射状裂缝,继续加载侧面出现纵向裂缝,但之后试件裂缝发展缓慢甚至停止发展,随着荷载的不断增大,最终发生钢筋拉断破坏,见图4(d),钢筋自由端始终未出现滑移。3%的纤维体积分数、1.35%和2.25%的配箍率可以有效提供侧向约束,使试件只需较短的搭接长度(分别为12d、8d、8d)就发生了钢筋的拉断破坏。
2.2 钢筋/UHPC平均黏结强度影响因素
钢筋/UHPC黏结应力沿锚固或搭接长度分布不均匀,且长度越大黏结应力分布越不均匀。采用钢筋/UHPC平均黏结应力来评估其黏结性能,计算公式如下:
τ=PπdL (1) 式中:P为对拉荷载;d为钢筋直径;L为锚固或搭接长度。对应于发生黏结破坏的应力称为平均黏结强度。
2.2.1 钢筋埋置长度的影响
随着钢筋埋置长度的增大,钢筋拉拔应力由加载端向自由端传递的路径随之增大,可以延迟自由端的钢筋/UHPC黏结破坏,进而增大钢筋的极限荷载,如图3所示。但由于实际黏结应力分布不均匀,靠近加载端的黏结应力大,远离加载端的黏结应力小,增大埋置长度使远离加载端应力较小的部分变长了,因此,平均黏结应力随之减小,如图5所示。
2.2.2 钢纤维掺量的影响
图6展示了钢筋/UHPC 平均黏结强度与钢纤维体积分数关系。如图所示,钢纤维体积分数由2%提高到3%,在8d和10d的搭接长度时,平均黏结强度分别提高了8.0%和6.7%。钢纤维在基体中乱向分布,阻止了硬化过程中微裂纹的产生,在受力过程中,钢纤维会阻挠裂纹的扩展,迫使其改变方向,缓冲裂缝尖端处的应力集中,从而起到阻裂的作用[17]。有效地约束了UHPC,抑制了劈裂裂缝的发展,提高了钢筋与UHPC的黏结强度[24]。钢纤维体积分数由3%提高到4%,在8d和10d的搭接长度时,平均黏结强度出现了略微降低,分别降低了0.80%和0.83%,其原因可能是钢纤维掺量增大,影响了UHPC的和易性和钢纤维的分散性,导致UHPC的密实度降低,降低了钢筋/UHPC黏结性能。
2.2.3 配箍率的影响
试验过程中记录了每一级荷载作用下的箍筋应变,如图7所示,试件加载初期箍筋应变值较小,呈线性缓慢增长;随着荷载增加,试件内部出现裂缝,箍筋应变迅速增长,曲线斜率变大,达到极限荷载时,大部分箍筋达到屈服,强度得到充分发挥。
配箍率对平均黏结强度的影响规律见图8,随着配箍率的增大平均黏结强度随之增大,箍筋可以对UHPC形成有效的约束,使钢筋周围UHPC处于多轴受压应力状态[25],钢筋之间斜向压肢的推力造成两筋间的分离趋势,会引起环向应力,箍筋可以抵消环向分力,有效抑制试件的纵向劈裂,进而提高黏结强度。
3. 钢筋/UHPC锚固及搭接黏结强度计算
3.1 钢筋/UHPC锚固黏结强度
参考普通混凝土钢筋搭接强度拟合公式的形式[20],本文搜集了文献[15-17]中的钢筋/UHPC锚固试验数据,如表4所示,并根据本文的试验结果,拟合得到考虑钢筋直径、锚固长度、保护层厚度、纤维体积掺量和抗压强度影响的锚固黏结强度计算公式:
表 4 钢筋/UHPC锚固和对拉拔出搭接试件试验数据Table 4. Test data of anchorage specimens and pull out lap-splice specimens of steel bars in UHPCReference Notation d/mm L/mm c/mm ρsv fcu/MPa Vf τut/MPa Anchorage specimen [15] φ14-50 14 50 68 0 147.78 0.023 37.07 φ15-50 16 50 67 0 147.78 0.023 33.28 φ16-50 18 50 66 0 147.78 0.023 29.87 φ17-50 18 75 66 0 147.78 0.023 28.94 [16] H1-LZ-8-24 8 24 71 0 121.77 0.02 55.3 H1-LZ-8-32 8 32 71 0 121.77 0.02 45.7 H1-LZ-10-30 10 30 70 0 121.77 0.02 46.1 H1-LZ-10-40 10 40 70 0 121.77 0.02 42.9 H2-LZ-16-48 16 48 67 0 132.39 0.02 52.7 H2-LZ-16-64 16 64 67 0 132.39 0.02 42.9 H2-LZ-16-80 16 80 67 0 132.39 0.02 34.1 H2-LZ-18-54 18 54 66 0 132.39 0.02 55 H2-LZ-18-72 18 72 66 0 132.39 0.02 42.3 H3-LZ-6-18 6 18 72 0 153.09 0.03 51.1 H3-LZ-8-24 8 24 71 0 153.09 0.03 70.5 H3-LZ-8-32 8 32 71 0 153.09 0.03 52.8 H3-LZ-10-30 10 30 70 0 153.09 0.03 62.2 H2-NZ-16-12 16 48 12 0 132.39 0.02 31.1 H2-NZ-16-22 16 48 22 0 132.39 0.02 36 H2-NZ-16-32 16 48 32 0 132.39 0.02 41.9 H2-NZ-16-42 16 48 42 0 132.39 0.02 47.7 H2-NZ-16-52 16 48 52 0 132.39 0.02 48.8 H2-NZ-16-62 16 48 62 0 132.39 0.02 52.8 H3-LP-8-10 8 40 10 0 153.09 0.03 29.9 H3-LP-8-15 8 40 15 0 153.09 0.03 29.1 [17] P0.0 16 50 67 0 79.81 0 29.7 P0.5 16 50 67 0 92.27 0.005 31.18 P1.0 16 50 67 0 114.30 0.01 32.05 P1.5 16 50 67 0 117.02 0.015 36.72 P2.0 16 50 67 0 128.58 0.02 38.12 Lap-splice specimen [23] L100-R100-D1-S0 20 100 45 0 96.03 0.02 17.14 L100-R100-D1-S34 20 100 45 0.0034 96.03 0.02 18 L100-R100-D1-S75 20 100 45 0.0075 96.03 0.02 19.03 L100-R120-D1-S0 20 100 45 0 117.36 0.02 18.95 L100-R120-D1-S34 20 100 45 0.0034 117.36 0.02 19.9 L100-R120-D1-S75 20 100 45 0.0075 117.36 0.02 21.04 L100-R150-D1-S0 20 100 45 0 141.39 0.02 20.36 L100-R150-D1-S34 20 100 45 0.0034 141.39 0.02 22.12 L100-R150-D1-S75 20 100 45 0.0075 141.39 0.02 23.35 L150-R100-D1-S34 20 150 45 0.0034 96.03 0.02 17.52 L150-R120-D1-S34 20 150 45 0.0034 96.03 0.02 19.18 L200-R100-D1-S34 20 200 45 0.0034 96.03 0.02 14.75 L200-R100-D1-S34 20 200 45 0.0034 96.03 0.02 13.74 Notes: d—Steel bar diameter; L—Embedment length; c—Thickness of UHPC cover; ρsv—Hoop ratio; fcu—Compressive strength of cube; Vf—Fibre volume fraction; τut—Test value of ultimate average bond strength. τua=(0.53+2.31dlsa)(3.633+0.217cd)(0.604+1.839Vf)√fc (2) 回归公式的相关系数为0.97;适用范围:相对保护层厚度c/d在[1,5],纤维体积掺量Vf在[0,0.03],抗压强度fc在[80,150]。式中:τua为钢筋/UHPC极限锚固黏结强度;d为钢筋直径;lsa为锚固长度;c为保护层厚度,当相对保护层厚度c/d大于5时,取为5;fc为UHPC单轴抗压强度。
3.2 钢筋/UHPC搭接黏结强度
文献[23]通过试验数据拟合回归了钢筋搭接黏结强度公式,但没有考虑UHPC中纤维掺量因素的影响,本试验进一步丰富了搭接试验的数据,对文献[23]的公式进行验证,发现与试验值具有较大误差,如图9所示。因此,结合本文试验结果并参考文献[23]的试验数据(表4),拟合得到考虑钢筋直径、搭接长度、保护层厚度、配箍率、纤维体积掺量和抗压强度影响的钢筋/UHPC搭接黏结强度计算公式:
τul=(0.36+2.02dlsl)(0.86+0.57cd)(0.83+2√ρsv+11.65Vf)√fc (3) 回归公式的相关系数为0.99,适用范围:相对保护层厚度c/d在[1.8,2.8],配箍率ρsv在[0,0.0225],纤维体积掺量Vf在[0.02,0.04],抗压强度fc在[90,150]。式中:τul为钢筋/UHPC极限搭接黏结强度;lsl为搭接长度;ρsv为试件配箍率。拟合公式计算值与试验值吻合良好,如图9所示。
为了验证拟合公式的有效性,对文献[6]和[18]的梁式搭接试件的黏结强度进行计算并与试验结果进行对比,如表5所示,计算值与试验值比值的平均值为1.15,变异系数为0.29,与梁式试件试验结果吻合较好。
表 5 钢筋/UHPC搭接梁式试件黏结强度拟合公式验证Table 5. Verification of the fitting formula for lap-splice bond strength of beam lap-splice steel bars/UHPC specimensReference Notation d/mm L/mm c/mm fc/MPa Vf τut/MPa τuf/MPa τuf/τut Beam lap-splice specimen [6] 1-12-25-L 25 300 45 130 0.03 10.8 13.40 1.26 2-12-25-L 25 300 45 130 0.03 9.8 13.40 1.39 1-18-25-L 25 450 45 130 0.03 6.8 11.98 1.96 1-12-35-L 35 420 45 130 0.03 9.8 11.32 1.15 1-18-35-L 35 630 45 130 0.03 6.11 10.12 1.81 1-6-25-L 25 150 45 130 0.03 19.6 17.67 0.74 1-6-25-L1 25 150 45 130 0.03 19.6 17.67 0.74 1-12-25-L1 25 300 45 130 0.03 9.8 13.40 1.39 1-6-35-L 35 210 45 130 0.03 16.23 14.92 0.74 1-6-35-L½ 35 210 45 130 0.03 12.32 14.92 0.97 1-12-35-L½ 35 420 45 130 0.03 9.16 11.32 1.24 [18] 25-12-L-1% 25 300 25 125 0.01 9.5 8.00 1.04 25-12-L-2% 25 300 25 124 0.02 10.4 8.94 0.94 25-12-L-3% 25 300 25 114 0.03 10.5 9.51 0.90 25-12-R-3% 25 300 25 114 0.03 10 9.51 0.94 35-18-L-3% 35 630 35 114 0.03 8.2 8.50 1.13 35-18-R-3% 35 630 35 114 0.03 7.2 8.50 1.28 Average value 1.15 Variation coefficient 0.29 Notes: fc—Uniaxial compressive strength; τut—Test value of ultimate average bond strength; τuf—Value of ultimate average bond strength calculated by the Eq. (3). 4. 钢筋/UHPC临界锚固及搭接长度计算
定义钢筋达到屈服强度fy时,钢筋从UHPC中不被拨出所需的最小锚固和搭接长度分别为临界屈服锚固长度lsay和临界屈服搭接长度lsly;钢筋达到极限强度fu时,钢筋从UHPC中不被拨出所需的最小锚固和搭接长度分别为临界极限锚固长度lsau和临界极限搭接长度lslu。由图3可知,各类型试件的极限荷载随锚固或搭接长度的变化趋势近似为线性,因此,各类试件的临界屈服锚固长度lsayt或搭接长度lslyt (合称为临界屈服长度lsyt)以及临界极限锚固长度lsaut或搭接长度lslut (合称为临界极限长度lsut)可按线性规律近似确定,如表6和图10所示。随着纤维体积掺量和配箍率的增大,临界屈服和极限长度逐渐减小。
表 6 钢筋/UHPC锚固和搭接长度试验值与计算值Table 6. Test values and calculated values of development length and splice length of steel bars/UHPCType Minimum anchorage or lap length of steel bar yield Minimum anchorage or lap length of steel bar rupture lsyACI lsyGB lsys lsyf lsyt lsuACI lsuGB lsus lsuf lsut Anchorage specimen 28.6d 11.2d 5.3d 3.7d 3.6d 39.1d 15.3d 7.2d 6.6d 7.1d 2.25vol% hoops 20.9d 17.9d 10.5d 5.8d 4.5d 28.6d 24.4d 14.4d 10.1d 7.6d 1.35vol% hoops 20.9d 17.9d 10.5d 6.4d 4.9d 28.6d 24.4d 14.4d 11.0d 8.1d 0.67vol% hoops 20.9d 17.9d 10.5d 7.1d 4.8d 28.6d 24.4d 14.4d 11.9d 10.6d 4vol% fibers 28.9d 17.6d 10.6d 6.5d 5.8d 39.4d 24.0d 14.5d 11.1d 13.2d 3vol% fibers 28.3d 16.4d 10.4d 7.5d — 38.7d 22.4d 14.3d 12.5d 12.1d 2vol% fibers 29.0d 17.9d 10.5d 9.3d 7.3d 39.7d 24.4d 14.4d 15.0d 12.6d Notes: lsyACI, lsyGB, lsys and lsyf—Minimum anchorage or lap length of steel bar yield calculated by the ACI 318—19[27], GB 50010—2010[26], simplified algorithm and fitting formula, respectively; lsuACI, lsuGB, lsus, and lsuf—Minimum anchorage or lap length of steel bar rupture calculated by the ACI 318—19[27], GB 50010—2010[26], simplified algorithm and fitting formula, respectively; lsyt—Test value of minimum anchorage or lap length of steel bar yield; lsut—Test value of minimum anchorage or lap length of steel bar rupture. 4.1 规范中钢筋/UHPC的锚固和搭接长度的计算
4.1.1 GB 50010—2010规范[26]的锚固和搭接长度计算
《混凝土结构设计规范》GB 50010—2010[26]中规定受拉钢筋的锚固和搭接长度按下式进行计算:
ls=αξaξlfyftd (4) 式中:α为钢筋的外形系数,考虑钢筋的表面类型对黏结强度的影响,对本文钢筋取0.14;ξa为锚固或搭接长度修正系数,主要考虑了钢筋直径大于25 mm,表面涂有环氧树脂,有施工扰动,实配钢筋面积大于计算钢筋面积以及保护层厚度大于3d或5d等情况的影响;ξ1为纵向受拉钢筋搭接长度修正系数,主要考虑了纵向搭接钢筋接头面积百分率,对本文试件取1.6,对于锚固试件取1.0。
4.1.2 ACI 318—19规范[27]搭接长度的算法
美国规范ACI 318—19[27]根据表7将搭接接头分为A、B两类,其中基本的锚固或搭接长度按下式计算:
As,p/As,r Maximum percent of As spliced
within required lap length/%Splice type Lap splice lengths ls ≥2 50 A Greater of: 1.0ld and 304.8 mm 100 B Greater of: 1.3ld and 304.8 mm <2 All cases B Note: As,p/As,r—Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice location. ldd=3fy40√fc(c+Ktrd) (5) Ktr=40Atrsn (6) 式中:为避免发生钢筋拔出破坏:规定
(c+Ktr)/d⩽ 2.5 ;f为钢筋应力;fc混凝土圆柱体抗压强度,由于缺少抗压强度69 MPa以上的试验数据,限定\sqrt {{f_{\rm{c}}}} \leqslant 8.3 ,但Azizinamini等[28]和Hamad等[29]均认为这条限定并不合理;c为保护层厚度;d为钢筋直径;Atr为垂直于劈裂面的横向钢筋面积;s为横向钢筋间距;n为搭接钢筋数量。由公式可以看出美国规范考虑了混凝土抗压强度、保护层厚度、钢筋直径和箍筋对搭接长度的影响。本文搭接接头按B类接头进行计算。分别采用GB 50010—2010规范[26]及ACI 318—19规范[27]对钢筋/UHPC锚固和搭接长度进行计算,如表6和图10所示,对比试验结果可知:两规范计算的临界锚固和搭接长度偏于保守,尤其对于无箍筋的试件,美国ACI 318—19规范[27]的计算结果过于保守。
4.2 钢筋/UHPC临界锚固、搭接长度拟合公式
4.2.1 临界锚固长度拟合公式
结合式(1)和式(2),可以推出钢筋/UHPC的锚固长度计算公式:
\frac{{{l_{{\rm{sa}}}}}}{d} = \frac{f}{{2.22\left(0.86 + 0.57\dfrac{c}{d}\right)(0.83 + 11.56{V_{\rm{f}}})\sqrt {{f_{\rm{c}}}} }} - 5.61 (7) 式中:
{l_{{\rm{sa}}}}/d 称为相对锚固长度。f取钢筋屈服强度fy时,得临界屈服锚固长度lsayf;当f取钢筋极限强度fu时,得到临界极限锚固长度lsauf。4.2.2 临界搭接长度拟合公式
同样结合式(1)和式(3),可以推出钢筋/UHPC搭接长度计算公式:
\begin{split} &\frac{{{l_{{\rm{sl}}}}}}{d} =\\ &\dfrac{f}{{1.44\left(0.86 + 0.57\dfrac{c}{d}\right)(0.83 + 2\sqrt {{\rho _{{\rm{sv}}}}} + 11.65{V_{\rm{f}}})\sqrt {{f_{\rm{c}}}} }} - 5.61 \end{split} (8) 式中:f取钢筋屈服强度fy时,得临界屈服搭接长度lslyf;f取钢筋极限强度fu时,得到临界极限搭接长度lsauf。
临界锚固和搭接长度拟合公式计算值如表6和图10所示,可知拟合公式计算值与试验值吻合良好。
4.3 钢筋/UHPC临界搭接长度简化算法
为便于工程实际应用,参考GB 50010—2010规范[26]的算法,提出钢筋/UHPC临界锚固和搭接长度简化计算方法。钢筋搭接因仅有部分周径参与力的传递,因此,钢筋的搭接长度较锚固长度长[30]。GB 50010—2010规范[26]以锚固长度为基准,对于纵向搭接钢筋接头面积百分率为25%、50%和100%的情况,搭接长度分别取1.2、1.4和1.6倍的锚固长度。
4.3.1 钢筋/UHPC临界锚固长度简化计算公式
式(4)实际上是根据受力平衡条件建立的锚固长度计算公式
{l_{\rm{s}}} = \dfrac{{{f_{\rm{y}}}d}}{{4{\tau _{\rm{u}}}}} 的变形,采用混凝土的单轴抗拉强度ft替代τu来表征混凝土强度对锚固长度的影响,式(4)中的外形系数\alpha = \dfrac{{{f_{\rm{t}}}}}{{4{\tau _{\rm{u}}}}} 。原海燕[31]对比了UHPC与普通C40混凝土的各项力学性能,UHPC单轴抗拉强度为普通C40混凝土的1.5倍,抗压强度和极限黏结强度均约为普通混凝土的3倍。因此,对于UHPC采用其抗压强度替代τu来表征UHPC强度对锚固长度的影响较为合理。此时,定义外形系数{\alpha _{\rm{u}}} = \dfrac{{\sqrt {{f_{\rm{c}}}} }}{{4{\tau _{\rm{u}}}}} ,通过对本文试验及参考文献[15-17]的数据进行分析计算得αu的取值范围在0.04~0.12之间,因此偏安全的取为0.12。得到钢筋/UHPC锚固长度计算公式:{l_{\rm{s}}} = {\alpha _{\rm{u}}}\frac{f}{{\sqrt {{f_{\rm{c}}}} }}d (9) 式中:f取钢筋屈服强度fy时得临界屈服锚固长度lsay,f取钢筋极限强度fu时得临界极限锚固长度lsau;fc为UHPC单轴抗压强度。
4.3.2 临界锚固长度与搭接长度对比分析
钢筋搭接因仅有部分周径参与力的传递,因此,钢筋的搭接长度较锚固长度长。本文采用直径25 mm的钢筋,相同纤维体积分数(2%)、保护层厚度(45 mm)和UHPC抗压强度(103.6 MPa)且未配箍筋的情况下,分别进行了3d、5d和7d埋置长度的锚固和搭接试验,由表6和图10可知钢筋/UHPC临界屈服锚固和搭接长度分别为3.6d和7.3d,临界极限锚固和搭接长度分别为7.1d和12.6d,可得UHPC中变形钢筋的临界搭接长度约为其临界锚固长度的2倍,验证了文献[23]所推得的结论。因此,钢筋/UHPC搭接长度可由式(9)计算出的锚固长度乘以2得到。
简化算法计算结果如表6和图10所示,式(9)未考虑纤维体积掺量和配箍率的影响,计算结果较为保守,但相比于GB 50010—2010规范[26]及ACI 318—19规范[27]的计算值较为准确。
文献[6]中直径25 mm的钢筋在梁跨中搭接于抗压强度130 MPa、纤维体积分数为3%的UHPC中,保护层厚度为30 mm且未配箍筋,在搭接长度为12d时,单调荷载作用下未发生搭接破坏,分别采用拟合公式和简化算法计算的临界极限搭接长度为12.7d和13.6d,与试验结果相比较为吻合且偏于安全。
5. 结 论
通过21组钢筋搭接对拉拔出试验和3组钢筋直接拔出锚固试验,并参考相关文献数据,得出以下结论:
(1)钢筋搭接试验主要出现劈裂拔出破坏和钢筋拉断破坏2种破坏模式,增大搭接长度和配箍率以及适当增大纤维掺量均有利于试件由劈裂拔出破坏变为钢筋拉断破坏;
(2)试验得出各类型试件的临界屈服和极限搭接长度,对直径为25 mm的HRB400带肋钢筋,在抗压强度为110.1 MPa、纤维体积分数为2%的超高性能混凝土(UHPC)中,保护层厚度为45 mm且未配箍筋时,其临界屈服和极限搭接长度分别为7.3d和12.6d (d为钢筋直径),增加配箍率和适当增大纤维掺量均能减小钢筋/UHPC临界搭接长度;
(3)随搭接长度的增大,钢筋/UHPC平均黏结强度减小;钢纤维掺量的增大及配箍率的增大,提高了箍筋对UHPC的约束作用,有效限制了试件的纵向劈裂,黏结强度随之增大;
(4)采用中国GB 50010—2010规范[26]和ACI 318—19规范[27]计算的钢筋/UHPC锚固和搭接长度与试验结果相比均过于保守。参考相关文献的试验数据,并结合本文的试验结果,拟合得到钢筋锚固试件、钢筋搭接试件的平均黏结强度计算公式及临界锚固和搭接长度计算公式,且采用梁式搭接试验的结果对钢筋/UHPC黏结强度拟合公式进行验证,结果较为吻合。参考中国规范的算法建立了钢筋/UHPC临界锚固和搭接长度简化算法,未考虑纤维掺量和配箍率的影响,计算结果较为保守,相比于GB 50010—2010规范[26]及ACI 318—19规范[27]的计算值较为准确。
-
图 1 (a) 改进Hummers制备氧化石墨烯(GO)[11];(b) 球磨和液相剥离组合剥落石墨烯[13];(c) 模板定向化学气相沉积法(CVD)制备石墨烯[17]
Figure 1. (a) Preparation of graphene oxide (GO) based on the modified Hummers method[11]; (b) Based on ball-milling and liquid phase exfoliated graphene[13]; (c) Graphene prepared via template-oriented chemicalvapor deposition (CVD)[17]
PVA—Polyvinyl alcohol; GNFs—Graphene nanofibers; S, S-GNFs—Stainless steel-graphene nanofibers; MFCs—Mass flow controllers
图 3 (a) 常规溶胶-凝胶法与发泡溶胶-凝胶法制备的对比图[28];(b) 水塑发泡法制备GAs及发泡机制示意图[29];冰晶模板法制备GA图示及孔隙结构的SEM图像(c)及冰晶成核和冰粒生长模拟图(d)[32]
Figure 3. (a) Comparative diagrams of the conventional sol-gel method and surfactant-foaming sol-gel method[28]; (b) Schematic diagram of the preparation of GAs and mechanism of hydroplastic foaming method[29]; Schematic diagram of the ice crystal template method and SEM images of porous network structures (c) and show the nucleation and anisotropy growth of ice grains (d)[32]
POM—Polarized-light optical microscopy; PRGH—Prereduced GO hydrogel; FGO—Foamed GO; GHB—Graphene hydrogel bulk
图 6 MnO/多孔石墨烯气凝胶(PGA)制备示意图(a)、恒流充放电测试(b)、倍率性能(c)、循环性能(d)[54];(e) Si@SiOx/碳纳米管(CNTs)/GA制备示意图[61]
Figure 6. Schematic diagram of preparation (a), GCD curves (b), rate performance (c) and cycling performance (d) of MnO/porous-graphene aerogel (PGA)[54]; (e) Schematic diagram of Si@SiOx/carbon nanotubes (CNTs)/GA preparation[61]
图 7 rGO@Sb2O3制备流程示意图(a)、形貌(b)和储钠倍率性能(c)[66];(d) Sb2S3@N-C/rGO制备流程示意图[69];(e) N、P双掺杂GA (NPGA)制备流程示意图[74]
Figure 7. Schematic illustration of the preparation procedure (a), microtopography (b) and sodium storage rate performance (c) of rGO@Sb2O3[66]; (d) Schematic illustration of the preparation of Sb2S3@N-C/rGO[69]; (e) Schematic illustration of the preparation of N, P co-doping GA (NPGA)[74]
PDA—Polydopamine
图 8 TpDq-共价有机框架(COF)/rGO气凝胶制备流程图(a)、SEM形貌(b)、充放电曲线(c)、电流密度-比容量关系图(d)[80]
Figure 8. Schematic diagram of preparation (a), SEM image (b), charge-discharge curves (c), current density-specific capacity (d) of TpDq-covalent organic frameworks (COF)/rGO aerogel[80]
PTSA—p-toluenesulfonic acid; Tp—1, 3, 5-triformylphloroglucinol; Dq—diaminoanthraquinone
图 9 聚吡咯/氧化石墨烯(PGO)@GA的结构示意图(a)、充放电曲线(b)、倍率性能(c)、EIS阻抗测试(d)、循环性能(e)[87]
Figure 9. Schematic diagram of structure (a), charge-discharge curves (b), rate performance (c) , EIS curves (d), cycling performance (e) of polypyrrole/graphene oxide (PGO)@GA[87]
Z'—Real part of impedance; Z''—Imaginary part of impedance; Rs—Solution resistance; Rct—Charge transfer resistance; W0—Warburg region; SCE—Saturated calomel electrode
图 10 TiO2−x/GA制备示意图(a)、倍率性能(b)和循环性能(c)[94];LVO/GA的SEM和储能机制(d)、循环性能对比(e)[99]
Figure 10. Schematic illustration of preparation (a), rate performance (b) and cycling performance (c) of TiO2−x/GA[94]; SEM image and mechanism (d), cycling performance comparison (e) of LVO/GA[99]
B-TiO2−x—Black-TiO2−x; LVO—Li3VO4
表 1 锂离子电池(LIBs)用金属氧化物(MOs)-GA复合负极的MOs种类、形貌和储能性能
Table 1 MOs species, morphology and energy storage performance of metal oxides (MOs)-GA composite anode materials for lithiumion batteries (LIBs)
Anode MOs Nanomorphology Specific capacity/(mA·h·g–1) Current density/(A·g–1) Ref. Fe3O4 NWs/GA Fe3O4 Nanowires 557 2 [45] Fe3O4/GAs Nanoclusters 522.8 1 [46] Fe3O4/GA Nanoflowers 797 0.2 [47] TiO2/GA TiO2 Nanoflowers 663.2 0.1 [48] GASO SnO2 Nanoparticles 1032 0.1 [49] SnO2 NRs/GA Nanorods 1005 0.1 [50] MO/MS/SGA MoO2 Nanoparticles 533 0.5 [51] Co3O4@GA Co3O4 Nanosquares 850 0.1 [52] Notes: GASO—Graphene aerogel/SnO2; MO/MS/SGA—MoO2/MoS2/S-doped graphene aerogel; NWs—Nanowires; NRs—Nanorods. 表 2 超级电容器(SCs)用GA复合材料性能表现
Table 2 Energy storage performance of GA composite materials for supercapacitors (SCs)
Electrode material Specific capacity Cycle performance Ref. All SCs Bio-AC/rGO/CNF//MnO2/Bio-AC/rGO/CNF 812 mF·cm–2 99% capacitance retention after 5000 cycles [78] ETAC/CNF/rGO 556 F·g–1 97.5% capacitance retention after 10000 cycles [79] TpDq-COF/rGO 269 F·g–1 96% capacitance retention after 5000 cycles [80] DAAQ-COFs/GA 378 F·g–1 88.9% capacitance retention after 20000 cycles [81] v-COF-GAs 289 F·g–1 92% capacitance retention after 20000 cycles [82] All SCs PPys-CNTs@3D//GA MnO2@CNTs@3D GA 950 mF·cm–2 84.6% capacitance retention after 2000 cycles [83] PANI/rGO 808 F·g–1 73% capacitance retention after 1000 cycles [84] GA-Fe2O3 200 F·g–1 72.3% capacitance retention after 5000 cycles [85] MnO2/GA 275 F·g–1 100% capacitance retention after 5000 cycles [86] Notes: Bio-AC—Biomass active carbon; CNF—Cellulose nanofiber; ETAC—Eucommia wood tar-based activated carbon; TpDq—1, 3, 5-triformylphloroglucinol diaminoanthraquinone; COF—Covalent organic frameworks; DAAQ—2, 6-diaminoanthraquinone; PPy—Polypyrroles; PANI—Polyaniline. -
[1] MAO J, IOCOZZIA J, HUANG J, et al. Graphene aerogels for efficient energy storage and conversion[J]. Energy & Environmental Science, 2018, 11(4): 772-799.
[2] ANG T Z, SALEM M, KAMAROL M, et al. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions[J]. Energy Strategy Reviews, 2022, 43: 100939. DOI: 10.1016/j.esr.2022.100939
[3] ZHAO Y, ZHANG Y, WANG Y, et al. Versatile zero-to three-dimensional carbon for electrochemical energy storage[J]. Carbon Energy, 2021, 3(6): 895-915. DOI: 10.1002/cey2.137
[4] SHAQSI A Z, SOPIAN K, AL HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306.
[5] WANG B, RUAN T, CHEN Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials, 2020, 24: 22-51. DOI: 10.1016/j.ensm.2019.08.004
[6] LING R, CAO B, QI W, et al. Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: A versatile cathode and anode host material with high-rate and ultralong-life for sodium storage[J]. Journal of Alloys and Compounds, 2021, 869: 159307. DOI: 10.1016/j.jallcom.2021.159307
[7] LIU W, ZHANG X, XU Y, et al. Recent advances on carbon-based materials for high performance lithium-ion capacitors[J]. Batteries & Supercaps, 2021, 4(3): 407-428.
[8] SUI D, CHANG M, PENG Z, et al. Graphene-based cathode materials for lithium-ion capacitors: A review[J]. Nanomaterials, 2021, 11(10): 2771. DOI: 10.3390/nano11102771
[9] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. DOI: 10.1021/nn1006368
[10] CHEN J, YAO B, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. DOI: 10.1016/j.carbon.2013.07.055
[11] YU H, ZHANG B, BULIN C, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Scientific Reports, 2016, 6: 36143. DOI: 10.1038/srep36143
[12] TIAN J, WU S, YIN X, et al. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode[J]. Applied Surface Science, 2019, 496: 143696. DOI: 10.1016/j.apsusc.2019.143696
[13] ZHANG J, YANG Y, HUANG X, et al. Novel preparation of high-yield graphene and graphene/ZnO composite[J]. Journal of Alloys and Compounds, 2021, 875: 160024. DOI: 10.1016/j.jallcom.2021.160024
[14] GÜRÜNLÜ B, TAŞDELEN-YÜCEDAĞ Ç, BAYRAMOĞLU M. One pot synthesis of graphene through microwave assisted liquid exfoliation of graphite in different solvents[J]. Molecules, 2022, 27(15): 5027. DOI: 10.3390/molecules27155027
[15] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. DOI: 10.1038/nature07719
[16] CHEN Z, REN W, GAO L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428. DOI: 10.1038/nmat3001
[17] THIRUMAL V, YUVAKKUMAR R, SENTHIL K P, et al. Direct growth of multilayered graphene nanofibers by chemical vapour deposition and their binder-free electrodes for symmetric supercapacitor devices[J]. Progress in Organic Coatings, 2021, 161: 106511. DOI: 10.1016/j.porgcoat.2021.106511
[18] STEFANO V, GEORG P, FILIPPO F, et al. 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC[J]. Carbon, 2022, 189: 210-218. DOI: 10.1016/j.carbon.2021.12.042
[19] 高亚辉, 尹国杰, 张少文, 等. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100. DOI: 10.11868/j.issn.1001-4381.2019.000704 GAO Yahui, YIN Guojie, ZHANG Shaowen, et al. Research progress in electrochemical preparation of graphene[J]. Journal of Materials Engineering, 2020, 48(8): 84-100(in Chinese). DOI: 10.11868/j.issn.1001-4381.2019.000704
[20] LEI Y, OSSONON B D, TRAHAN P L, et al. Electrochemically exfoliated graphene oxide for simple fabrication of cocaine aptasensors[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35580-35589.
[21] BAI H, LI C, WANG X, et al. On the gelation of graphene oxide[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5545-5551. DOI: 10.1021/jp1120299
[22] XU Y, SHENG K, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. DOI: 10.1021/nn101187z
[23] ZHANG X, SUI Z, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494. DOI: 10.1039/c1jm10239g
[24] HU H, ZHAO Z, WAN W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. DOI: 10.1002/adma.201204530
[25] LI M, JIANG Q, YAN M, et al. Three-dimensional boron- and nitrogen-codoped graphene aerogel-supported Pt nanoparticles as highly active electrocatalysts for methanol oxidation reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6644-6653.
[26] FENG Q, LI T, SUI Y, et al. Facile synthesis and first-principles study of nitrogen and sulfur dual-doped porous graphene aerogels/natural graphite as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2021, 884: 160923. DOI: 10.1016/j.jallcom.2021.160923
[27] BI H, CHEN I W, LIN T, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Advanced Materials, 2015, 27(39): 5943-5949. DOI: 10.1002/adma.201502682
[28] YANG H, LI Z, LU B, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications[J]. ACS Nano, 2018, 12(11): 11407-11416. DOI: 10.1021/acsnano.8b06380
[29] PANG K, SONG X, XU Z, et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors[J]. Science Advances, 2020, 6(46): eabd4045. DOI: 10.1126/sciadv.abd4045
[30] YANG C, ZHU X, WANG X, et al. Phase-field model of graphene aerogel formation by ice template method[J]. Applied Physics Letters, 2019, 115(11): 111901. DOI: 10.1063/1.5120311
[31] WANG Y, KONG D, SHI W, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1601057. DOI: 10.1002/aenm.201601057
[32] YANG C, ZHU X, WANG X, et al. Phase-field model of graphene aerogel formation by ice template method[J]. Applied Physics Letters, 2019, 115(11): 111901.
[33] XU X, TAN Y H, DING J, et al. 3D printing of next-generation electrochemical energy storage devices: From multiscale to multimaterial[J]. Energy & Environmental Materials, 2022, 5(2): 427-438.
[34] BROWN E, YAN P, TEKIK H, et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design, 2019, 170: 107689.
[35] ZHU C, LIU T, QIAN F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6): 3448-3456. DOI: 10.1021/acs.nanolett.5b04965
[36] JIANG Y, XU Z, HUANG T, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Advanced Functional Materials, 2018, 28(16): 1707024. DOI: 10.1002/adfm.201707024
[37] YAO B, CHANDRASEKARAN S, ZHANG H, et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels[J]. Advanced Materials, 2020, 32(8): 1906652.
[38] CHEN Q, SHEN J, ESTEVEZ D, et al. Ultraprecise 3D printed graphene aerogel microlattices on tape for micro sensors and E-skin[J]. Advanced Functional Materials, 2023, 33(33): 2302545.
[39] LE L, ZHANG D, DENG J, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. DOI: 10.1016/j.carbon.2021.07.053
[40] SUN J, LUO B, LI H. A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: Past, present, and future[J]. Advanced Energy and Sustainability Research, 2022, 3(6): 2100191. DOI: 10.1002/aesr.202100191
[41] LIU X, SUN Y, TONG Y, et al. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review[J]. Nano Energy, 2021, 86: 106070. DOI: 10.1016/j.nanoen.2021.106070
[42] ZHENG J P. Energy density theory of lithium-ion capacitors[J]. Journal of the Electrochemical Society, 2021, 168(8): 080503. DOI: 10.1149/1945-7111/ac180f
[43] DONG S, LYU N, WU Y, et al. Lithiumion and sodiumion hybrid capacitors: From insertion-type materials design to devices construction[J]. Advanced Functional Materials, 2021, 31(21): 2100455. DOI: 10.1002/adfm.202100455
[44] LAI S Y, CAVALLO C, ABDELHAMID M E, et al. Advanced and emerging negative electrodes for Li-ion capacitors: Pragmatism vs. performance[J]. Energies, 2021, 14(11): 3010. DOI: 10.3390/en14113010
[45] WANG Y, JIN Y, JIA M. Ultralong Fe3O4 nanowires embedded graphene aerogel composite anodes for lithium ion batteries[J]. Materials Letters, 2018, 228: 395-398. DOI: 10.1016/j.matlet.2018.06.077
[46] ZHOU S, ZHOU Y, JIANG W, et al. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery[J]. Applied Surface Science, 2018, 439: 927-933. DOI: 10.1016/j.apsusc.2017.12.259
[47] WANG Y, JIN Y, ZHAO C, et al. 3D graphene aerogel wrapped 3D flower-like Fe3O4 as a long stable and high rate anode material for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 830-831: 106-115. DOI: 10.1016/j.jelechem.2018.10.038
[48] CHENG L, QIAO D, ZHAO P, et al. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries[J]. Electrochimica Acta, 2019, 300: 417-425. DOI: 10.1016/j.electacta.2019.01.133
[49] SONG D, WANG S, LIU R, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material[J]. Applied Surface Science, 2019, 478: 290-298. DOI: 10.1016/j.apsusc.2019.01.143
[50] WANG Y, JIN Y, ZHAO C, et al. 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage[J]. Journal of Colloid and Interface Science, 2018, 532: 352-362. DOI: 10.1016/j.jcis.2018.08.011
[51] ZHANG Y, TAO H, MA H, et al. Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage[J]. Electrochimica Acta, 2018, 283: 619-627. DOI: 10.1016/j.electacta.2018.07.011
[52] SHAO J, XIAO J, WANG Y, et al. Cobalt oxide nanocubes encapsulated in graphene aerogel as integrated anodes for lithium-ion batteries[J]. ChemistrySelect, 2020, 5(17): 5323-5329. DOI: 10.1002/slct.202001273
[53] WANG Y, JIN Y, ZHAO C, et al. Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance[J]. Applied Surface Science, 2018, 458: 1035-1042. DOI: 10.1016/j.apsusc.2018.07.127
[54] MA Z, CAO H, ZHOU X, et al. Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries[J]. RSC Advances, 2017, 7(26): 15857-15863. DOI: 10.1039/C7RA00818J
[55] PAN L, GAO P, TERVOORT E, et al. Surface energy-driven ex situ hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: A versatile strategy[J]. Journal of Materials Chemistry A, 2018, 6(38): 18551-18560. DOI: 10.1039/C8TA07338D
[56] LIU R, ZHAO X, ZHAO H, et al. Carbon-coated MnO quantum dot-decorated three-dimensional graphene aerogel composite for high-performance lithium-ion batteries[J]. Energy & Fuels, 2023, 37(8): 6240-6247.
[57] ZHONG J, WANG T, WANG L, et al. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity[J]. Nano-Micro Letters, 2022, 14(1): 50. DOI: 10.1007/s40820-022-00790-z
[58] CHANG P, LIU X, ZHAO Q, et al. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31879-31886.
[59] YANG Z, LIU X, REN F, et al. Multi-layer wrapping functionalized silicon via graphene aerogels regenerated from spent graphite anode achieves high efficient lithium storage[J]. Journal of Alloys and Compounds, 2023, 969: 172227.
[60] AGHAJAMALI M, XIE H, JAVADI M, et al. Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries[J]. Chemistry of Materials, 2018, 30(21): 7782-7792. DOI: 10.1021/acs.chemmater.8b03198
[61] BAI X, HOU M, YU Z, et al. An optimized 3D carbon matrix for high rate silicon anodes[J]. RSC Advances, 2017, 7(53): 33521-33525. DOI: 10.1039/C7RA05647H
[62] YI T F, SARI H, LI X, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955. DOI: 10.1016/j.nanoen.2021.105955
[63] ZHANG L, LI X, YANG M, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective[J]. Energy Storage Materials, 2021, 41: 522-545. DOI: 10.1016/j.ensm.2021.06.033
[64] ZHANG L, ZHU C, YU S, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294. DOI: 10.1016/j.jechem.2021.08.001
[65] SONG Y, LI H, YANG L, et al. Solid-solution sulfides derived from tunable layered double hydroxide precursors/graphene aerogel for pseudocapacitors and sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42742-42750.
[66] ZHOU J, YAN B, YANG J, et al. A densely packed Sb2O3 nanosheet-graphene aerogel toward advanced sodium-ion batteries[J]. Nanoscale, 2018, 10(19): 9108-9114. DOI: 10.1039/C8NR02102C
[67] LAKSHMI K P, DEIVANAYAGAM R, SHAIJUMON M M. Carbon nanotube 'wired' octahedral Sb2O3/graphene aerogel as efficient anode material for sodium and lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 857: 158267. DOI: 10.1016/j.jallcom.2020.158267
[68] GUO X, WANG S, YU L, et al. Dense SnS2 nanoplates vertically anchored on a graphene aerogel for pseudocapacitive sodium storage[J]. Materials Chemistry Frontiers, 2022, 6(3): 325-332. DOI: 10.1039/D1QM01369F
[69] ZHAN W, ZHU M, LAN J, et al. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage[J]. Chemical Engineering Journal, 2021, 408: 128007. DOI: 10.1016/j.cej.2020.128007
[70] LIM Y V, HUANG S, HU J, et al. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation[J]. Small Methods, 2019, 3(7): 1900112. DOI: 10.1002/smtd.201900112
[71] XU J, WANG M, WICKRAMARATNE N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048. DOI: 10.1002/adma.201405370
[72] HOU H, SHAO L, ZHANG Y, et al. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries[J]. Advanced Science, 2017, 4(1): 1600243. DOI: 10.1002/advs.201600243
[73] ZHAO J, ZHANG Y Z, CHEN J, et al. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage[J]. Advanced Energy Materials, 2020, 10(18): 2000099. DOI: 10.1002/aenm.202000099
[74] LI C, FU Q, ZHAO K, et al. Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries[J]. Carbon, 2018, 139: 1117-1125. DOI: 10.1016/j.carbon.2018.06.035
[75] FAN L, LI X, SONG X, et al. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2637-2648.
[76] WANG Y, FU Q, LI C, et al. Nitrogen and phosphorus dual-doped graphene aerogel confined monodisperse iron phosphide nanodots as an ultrafast and long-term cycling anode material for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15083-15091.
[77] LIU S, SHI D, TU H, et al. Self-supported fluorine-doped boron carbonitride porous aerogels for high-performance supercapacitors[J]. Energy Technology, 2021, 9(12): 2100824. DOI: 10.1002/ente.202100824
[78] CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/rGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755. DOI: 10.1016/j.cej.2021.128755
[79] LIAO Z, CHENG J, YU J H, et al. Graphene aerogel with excellent property prepared by doping activated carbon and CNF for free-binder supercapacitor[J]. Carbohydrate Polymers, 2022, 286: 119287. DOI: 10.1016/j.carbpol.2022.119287
[80] LI C, YANG J, PACHFULE P, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity[J]. Nature Communications, 2020, 11(1): 4712. DOI: 10.1038/s41467-020-18427-3
[81] AN N, GUO Z, XIN J, et al. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(31): 16824-16833. DOI: 10.1039/D1TA04313G
[82] JIANG Y, ZHANG Z, CHEN D, et al. Vertical growth of 2D covalent organic framework nanoplatelets on macroporous scaffold for high-performance electrodes[J]. Advanced Materials, 2022, 34(49): 2204250. DOI: 10.1002/adma.202204250
[83] PAN Z, LIU M, YANG J, et al. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27(27): 1701122. DOI: 10.1002/adfm.201701122
[84] WU J, ZHANG Q, WANG J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5): 1280-1286.
[85] GUO R, DANG L, LIU Z, et al. Incorporation of electroactive NiCo2S4 and Fe2O3 into graphene aerogel for high-energy asymmetric supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125110. DOI: 10.1016/j.colsurfa.2020.125110
[86] MA C, WANG R, TETIK H, et al. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems[J]. Nano Energy, 2019, 66: 104124. DOI: 10.1016/j.nanoen.2019.104124
[87] ZHANG E, LIU W, LIU X, et al. Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor[J]. RSC Advances, 2020, 10(20): 11966-11970. DOI: 10.1039/D0RA01181A
[88] 逄其涵, 宋慧敏, 刘佳豪, 等. MOF/聚吡咯/石墨烯三元复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2024, 41(2): 726-737. FENG Qihan, SONG Huimin, LIU Jiahao, et al. Preparation and electrochemical properties of metal-organic framework/polypyrrole/graphene ternary composite aerogel[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 726-737(in Chinese).
[89] ZOU K, CAI P, CAO X, et al. Carbon materials for high-performance lithium-ion capacitor[J]. Current Opinion in Electrochemistry, 2020, 21: 31-39. DOI: 10.1016/j.coelec.2020.01.005
[90] LIANG J, WANG D W. Design rationale and device configuration of lithiumion capacitors[J]. Advanced Energy Materials, 2022, 12(25): 2200920. DOI: 10.1002/aenm.202200920
[91] ZHENG J, XING G, ZHANG L, et al. A minireview on high-performance anodes for lithium-ion capacitors[J]. Batteries & Supercaps, 2021, 4(6): 897-908.
[92] SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. DOI: 10.1038/nenergy.2016.70
[93] YANG C, LAN J L, DING C, et al. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors[J]. Electrochimica Acta, 2019, 296: 790-798. DOI: 10.1016/j.electacta.2018.10.037
[94] ZHU G, MA L, LIN H, et al. High-performance Li-ion capacitor based on black-TiO2− x/graphene aerogel anode and biomass-derived microporous carbon cathode[J]. Nano Research, 2019, 12(7): 1713-1719. DOI: 10.1007/s12274-019-2427-3
[95] LI Y, WANG R, ZHENG W, et al. Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors[J]. Materials Technology, 2020, 35(9-10): 625-634. DOI: 10.1080/10667857.2020.1734720
[96] YANG H, ZHANG C, MENG Q, et al. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. Journal of Power Sources, 2019, 431: 114-124. DOI: 10.1016/j.jpowsour.2019.05.060
[97] LIN D, CHANDRASEKARAN S, FORIEN J B, et al. 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage[J]. Advanced Energy Materials, 2023, 13(20): 2300408.
[98] YAO L, DENG H, HUANG Q A, et al. Three-dimensional carbon-coated ZnFe2O4 nanospheres/nitrogen-doped graphene aerogels as anode for lithium-ion batteries[J]. Ceramics International, 2017, 43(1): 1022-1028. DOI: 10.1016/j.ceramint.2016.10.034
[99] ZHANG M, DONG L, ZHANG C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. Journal of Power Sources, 2020, 468: 228364. DOI: 10.1016/j.jpowsour.2020.228364
[100] JIANG H, WANG S, ZHANG B, et al. High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match[J]. Chemical Engineering Journal, 2020, 396: 125207. DOI: 10.1016/j.cej.2020.125207
[101] SAJJAD M, JAVED M S, IMRAN M, et al. CuCo2O4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy[J]. New Journal of Chemistry, 2021, 45(44): 20751-20764. DOI: 10.1039/D1NJ04919D
[102] WANG H, ZHANG Y, ANG H, et al. A high-energy lithium-ion capacitor by integration of a 3d interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18): 3082-3093. DOI: 10.1002/adfm.201505240
[103] SHANG Y, SUN X, CHEN Z, et al. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors[J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1500-1513. DOI: 10.1007/s11705-021-2086-2
[104] LI Y, XIA K, ZHANG Y, et al. Ethanol-mediated dense and N/O/P tri-doped graphene xerogel for ultrahigh volumetric capacitive energy storage[J]. Journal of Power Sources, 2023, 564: 232869. DOI: 10.1016/j.jpowsour.2023.232869
-
期刊类型引用(4)
1. 曹邵文,周国庆,蔡琦琳,叶庆,庞昊强,吴玺. 太阳能电池综述:材料、政策驱动机制及应用前景. 复合材料学报. 2022(05): 1847-1858 . 本站查看
2. 刘玉梅,温馨,孟翔飞. 基于技术轨道跃迁的突破性技术预测方法及应用研究. 情报杂志. 2021(11): 39-45+15 . 百度学术
3. 王明序,许子傲,葛明桥,高强. 浅色导电纤维的发展及其最新应用. 丝绸. 2020(01): 37-42 . 百度学术
4. 刘璇,李必奎,李明,王鹏波. 铜基碳纳米管复合薄膜载流性能分析. 化工进展. 2018(12): 4782-4790 . 百度学术
其他类型引用(2)
-
目的
电化学储能器件具有使用方便、环境污染小、能量密度和功率密度高等优势,对可再生能源的持续利用有着关键性的作用,受电极材料的影响,储能器件已难以满足当前储能市场的需求。近年来,石墨烯气凝胶因其独特的多孔结构、稳定骨架及易修饰性,使其在电极材料研究方面展现出非凡的研究潜力。本文通过近几年来石墨烯气凝胶储能应用研究进展的调研,总结石墨烯气凝胶的制备、改性方法和应用领域,为设计和合成具有优异储能性能的石墨烯气凝胶电极提供新思路。
方法首先,石墨烯气凝胶作为三维电极材料,其稳定的内部结构和孔隙率是保证电极材料稳定发挥作用的前提,根据石墨烯预处理和石墨烯气凝胶合成制备,总结石墨烯前体及石墨烯气凝胶的处理策略。其次,根据储能机制的不同,分别从锂离子电池、钠离子电池、超级电容器及锂离子电容器四大领域阐述石墨烯气凝胶及其复合材料的改性应用及表现。最后,总结电化学储能用石墨烯气凝胶的研究进展以及当前存在的挑战。基于此,通过对近年来石墨烯气凝胶复合材料的研究进展归纳总结,提出影响储能性能的因素和改进策略。
结果石墨烯前体的制备方法包括氧化还原法、液相剥离法、化学气相沉积法、外延生长法和电化学剥离法等。石墨烯堆叠程度、表面缺陷和表面官能团等能够影响石墨烯气凝胶成型。石墨烯气凝胶的制备方法包括液相还原法、模板法、3D打印等。液相还原法具有低成本和可修饰性强等优势;模板法能够实现有序的孔隙分布且具有宏量制备的潜力;3D打印能够设计电极材料的宏观结构,进而应用于各种应用场景。在不同储能领域,石墨烯气凝胶表现出不同的储能机制。并且其储能性能与内部结构、孔隙分布、表面缺陷和官能团等有关,因此改善结构和形貌能够有效提升其储能性能。三维互联的多孔结构能够提供快速的电子传输路径,丰富的孔隙分布能够保证电解质离子的充分接触和迅速迁移,表面缺陷和官能团更够提供更多的吸附位点进而提升储能容量;此外,作为基体材料,石墨烯气凝胶能够与金属氧化物、硅单质、导电聚合物和生物质衍生碳材料等复合改性,可以有效提高其储能性能。当前,石墨烯气凝胶储能存在的主要问题包括复杂的干燥技术、低的体积能量密度和倍率性能等。
结论提升石墨烯气凝胶复合材料储能性能的途径有三方面:(1)从制备方法入手,开发合适的液相体系,通过调控溶剂环境改善材料内部交联结构获得结构稳定的电极材料;(2)对石墨烯气凝胶进行元素掺杂和与其他材料复合,优势互补,进而提升其储能性能;(3)加深对石墨烯气凝胶复合材料储能机制的理解,先进原位表征手段如原位X射线衍射、原位拉曼及原位透射电子显微镜等深入分析储能机制等有利于设计先进的内部结构。总之,开发新型石墨烯气凝胶复合材料和深入理解储能机制对拓展其在电化学储能领域的应用具有重要意义。