增材制造钛基复合材料体系与组织结构设计

Composition and architecture design in additive manufacturing of titanium matrix composites

  • 摘要: 增材制造技术作为一种样件快速成型制备技术,为基于成分调控与结构设计的高性能钛基复合材料的开发带来了机遇。本文介绍了增材制造钛基复合材料研究与应用的最新进展,分析了能量密度、打印路径及冷速控制等对材料显微组织与力学性能的影响。在此基础上,介绍了以陶瓷、金属间化合物及稀土元素为主的增材制造钛基复合材料成分调控策略。其中,以TiB、TiC为代表的陶瓷增强相及Ti-Cu体系的金属间化合物为目前钛基复合材料中广泛使用的增强体;以La、Ce和Nd为主的稀土元素则可有效解决氧偏聚问题并显著细化晶粒。进而以网状结构和层状结构为例介绍了增材制造钛基复合材料结构设计研究进展。其中,网状结构多通过Ti与B和C元素的原位反应生成增强相,并通过控制凝固过程实现对增强相非均匀分布的调控;层状结构则多通过交替打印多种粉体获得。网状、层状结构设计对钛基复合材料强韧化有着积极的作用。本文最后通过对研究现状和未来研究趋势的简要分析与展望,为增材制造高性能钛基复合材料的设计与制备提供一定参考。

     

    Abstract: Additive manufacturing is a rapid prototyping technology offering opportunities to develop high performance composites via composition regulation and architecture design. This brief review presents the latest research progress and application of additive manufactured titanium matrix composites (TMCs). Firstly, the effects of energy density, printing path and cooling rate on the microstructure and mechanical properties are systematically analyzed. Then, the composition regulation strategies pertaining to ceramic reinforcements, intermetallic compounds and rare earth elements are introduced. In general, the ceramic reinforcing phases and the intermetallic compounds play a positive role in tailoring the microstructures and thus mechanical properties of composites. The rare earth elements effectively inhibit oxygen polarization and refine the grains. Furthermore, the research on TMCs with network and laminated structures are presented. The network architecture is mostly generated by the in-situ reaction of Ti with B or C, which is controlled by the solidification process. The laminated structure is achieved via printing multiple powders alternately. Both architectures promote simultaneous strengthening and toughening. Finally, the state of the art and future outlooks are briefly presented to provide a reference for the design and preparation of high-performance TMCs via additive manufacturing.

     

/

返回文章
返回