Loading [MathJax]/jax/output/SVG/jax.js

负泊松比内凹六边形蜂窝夹层板的吸声性能

孔维凡, 付涛

孔维凡, 付涛. 负泊松比内凹六边形蜂窝夹层板的吸声性能[J]. 复合材料学报, 2024, 41(4): 2157-2166. DOI: 10.13801/j.cnki.fhclxb.20231024.003
引用本文: 孔维凡, 付涛. 负泊松比内凹六边形蜂窝夹层板的吸声性能[J]. 复合材料学报, 2024, 41(4): 2157-2166. DOI: 10.13801/j.cnki.fhclxb.20231024.003
KONG Weifan, FU Tao. Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2157-2166. DOI: 10.13801/j.cnki.fhclxb.20231024.003
Citation: KONG Weifan, FU Tao. Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2157-2166. DOI: 10.13801/j.cnki.fhclxb.20231024.003

负泊松比内凹六边形蜂窝夹层板的吸声性能

基金项目: 国家自然科学基金(52205105);云南省基础研究专项(202101AU070160;202201AT070145)
详细信息
    通讯作者:

    付涛,博士,讲师,硕士生导师,研究方向为智能材料与结构 E-mail: ftkmust@126.com

  • 中图分类号: TB333

Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio

Funds: National Natural Science Foundation of China (52205105); Yunnan Fundamental Research Projects (202101AU070160; 202201AT070145)
  • 摘要: 为了改善传统蜂窝夹层板结构的吸声特性,提出了一种负泊松比内凹六边形蜂窝夹层板结构,该结构上面板为微穿孔板,夹芯层为负泊松比内凹六边形蜂窝,其由19个具有内延伸管的单元腔体谐振器构成。采用COMSOL仿真软件对负泊松比内凹六边形蜂窝夹层板结构在500~950 Hz频率范围内进行吸声系数的计算,并运用B&K驻波管测量系统对仿真结果的有效性进行了验证。在保持负泊松比内凹六边形蜂窝胞元结构不变的前提下,研究了胞元参数对蜂窝夹层板结构吸声系数的影响,研究结果表明:当胞元倾角增大、内延伸管孔隙率减小、腔体壁厚减小时,结构的吸声性能增强;此外,腔体深度的增加和内延伸管管长的增加都会导致共振频率向更低频方向移动,其中腔体深度的改变更明显。在500~950 Hz频率范围内,该结构比传统蜂窝夹层板结构的平均吸声系数提升了5.64%,表明负泊松比内凹六边形蜂窝夹层板结构在低频范围内具有更优的吸声性能。

     

    Abstract: In order to improve the sound absorption characteristics of the traditional honeycomb sandwich panel structure, a negative Poisson's ratio concave hexagonal honeycomb sandwich panel structure was proposed, the upper panel of the structure was a micro-perforated plate, and the sandwich layer was a negative Poisson's ratio concave hexagonal honeycomb, which was composed of 19 units cavity resonators with internal extension tubes. The sound absorption coefficient of the concave hexagonal honeycomb sandwich plate structure in the frequency range of 500-950 Hz was calculated by COMSOL simulation software, and the validity of the simulation results was verified by the B&K standing wave tube measurement system. Under the premise of keeping the structure of negative Poisson's ratio concave hexagonal honeycomb cell unchanged, the influence of cell parameters on the sound absorption coefficient of honeycomb sandwich plate structure was studied. The results show that when the cell inclination angle increases, the porosity of the inner extension tube decreases, and the wall thickness of the cavity decreases, the sound absorption performance of the structure is enhanced. In addition, the increase of cavity depth and the increase of inner extension tube length will lead to the resonance frequency moving to lower frequencies, and the change of cavity depth is more obvious. In the frequency range of 500-950 Hz, the average sound absorption coefficient of the structure is increased by 5.64% compared with the traditional honeycomb sandwich panel structure, indicating that the negative Poisson's ratio has better sound absorption performance in the low frequency range than the traditional honeycomb sandwich panel structure.

     

  • 图  1   胞元的结构及空间排布方式

    Figure  1.   Structure of cells and spatial arrangement

    CRIET—Cavity resonator with internal extension tube

    图  2   多个吸声构件组成的圆柱形负泊松比内凹六边形蜂窝结构图

    Figure  2.   Cylindrical negative Poisson's ratio concave hexagonal honeycomb structure composed of multiple sound-absorbing components

    da—Diameter of the inner extension tube; ttop—Thickness of the upper panel; la—Length of the inner extension tube; t—Wall thickness of the cavity; a—Distance from the central axis of the inner extension tube to the upper panel; L—Cavity depth; tbot—Thickness of the lower panel

    图  3   B&K驻波管测量设备(a)及试件照片(b)

    Figure  3.   B&K standing wave tube measurement equipment (a) and photograph of the specimen (b)

    图  4   负泊松比结构模型的网格划分

    Figure  4.   Meshing of negative Poisson's ratio structure model

    图  5   正六边形蜂窝结构模型的网格划分

    Figure  5.   Meshing of regular hexagonal honeycomb structure models

    图  6   负泊松比内凹六边形结构实验和仿真的频率-吸声系数曲线

    Figure  6.   Frequency-absorption coefficient curves for experiments and simulations of concave hexagonal structures with negative Poisson's ratio

    图  7   负泊松比内凹六边形蜂窝结构和传统六边形蜂窝结构的频率-吸声系数曲线

    Figure  7.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal honeycomb structure and traditional hexagonal honeycomb structure

    图  8   不同内凹倾角θ的负泊松比内凹六边形结构频率-吸声系数曲线

    Figure  8.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal structures with different concave inclination angles θ

    图  9   不同内凹倾角的负泊松比内凹六边形结构频率-阻抗曲线

    Figure  9.   Frequency-impedance curves of negative Poisson's ratio concave hexagonal structures with different concave inclination angles

    图  10   不同孔隙率P的负泊松比内凹六边形结构频率-吸声系数曲线

    Figure  10.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal structures with different porosities P

    图  11   不同内延伸管管长la的负泊松比内凹六边形结构频率-吸声系数曲线

    Figure  11.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal structures with different inner extensiontube lengths la

    图  12   两种不同内延伸管管径的负泊松比内凹六边形结构蜂窝胞元结构内的能量耗散密度云图(从左到右管的直径分别为4.7 mm和4.6 mm)

    Figure  12.   Energy dissipation density cloud in two different inner extension pipe diameter honeycomb cell cell structures in negative Poisson's ratio concave hexagonal structure ( Tubes diameters from left to right are 4.7 mm and 4.6 mm, respectively)

    图  13   不同腔体壁厚t的负泊松比内凹六边形结构频率-吸声系数曲线

    Figure  13.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal structures with different cavity wall thicknesses t

    图  14   不同腔体深度L的负泊松比内凹六边形结构频率-吸声系数曲线

    Figure  14.   Frequency-absorption coefficient curves of negative Poisson's ratio concave hexagonal structures with different cavity depths L

    表  1   胞元的参数

    Table  1   Parameters of cells

    Cavity depth
    L/mm
    Center axis to upper
    panel distance a/mm
    Concave inclination
    θ/(°)
    Cavity wall thickness
    t/mm
    Upper panel thickness
    ttop/mm
    Lower panel thickness
    tbot/mm
    30 11 70 0.5 2 2
    下载: 导出CSV

    表  2   10个不同尺寸内延伸管的直径da

    Table  2   Diameter da of 10 different sizes of inner extension pipes

    Unit da/mm
    1 4.6
    2 4.9
    3 5.6
    4 5.2
    5 6.0
    6 6.0
    7 4.7
    8 5.6
    9 4.5
    10 4.7
    下载: 导出CSV

    表  3   内延伸管的管长la

    Table  3   Pipe length la of the inner extension pipe

    Unit la/mm
    1, 2, 3, 4, 5, 10 11.5
    6 8.9
    7 1.4
    8 5.3
    9 0
    下载: 导出CSV

    表  4   负泊松比内凹六边形结构试件各胞元内延伸管管长la

    Table  4   Length of intracellular extension tube la in negative Poisson's ratio concave hexagonal structure specimen

    Unit 1,2,4,5,10 6 7 8 9
    la-1/mm 11.5 8.9 1.4 5.3 0
    la-2/mm 12.5 9.9 2.4 6.3 1
    la-3/mm 13.5 10.9 3.4 7.3 2
    la-4/mm 5.42 5.42 5.42 5.42 5.42
    下载: 导出CSV
  • [1] 潘晋, 李娜, 方涵, 等. 桥梁防船撞夹层板结构形式耐撞性比较研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(6): 1027-1032.

    PAN Jin, LI Na, FANG Han, et al. Comparative study on the crashworthiness of bridge anti-ship collision sandwich plate structure[J]. Journal of Wuhan University of Technology (Traffic Science and Engineering), 2019, 43(6): 1027-1032(in Chinese).

    [2]

    BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering, 2018, 142: 221-240.

    [3] 董福祥, 李丽君, 张宪旭, 等. 对多孔材料夹层板的隔声性能进行试验及仿真分析[J]. 科学技术与工程, 2020, 20(12): 4660-4664. DOI: 10.3969/j.issn.1671-1815.2020.12.007

    DONG Fuxiang, LI Lijun, ZHANG Xianxu, et al. Experimental and simulation analysis of sound insulation performance of porous sandwich panel[J]. Science Technology and Engineering, 2020, 20(12): 4660-4664(in Chinese). DOI: 10.3969/j.issn.1671-1815.2020.12.007

    [4] 李维鑫. 微穿孔板低穿孔率条件下的吸声特性研究[D]. 镇江: 江苏大学, 2021.

    LI Weixin. Study on sound absorption characteristics of microperforated plate under low perforation rate[D]. Zhenjiang: Jiangsu University, 2021(in Chinese).

    [5] 魏斌, 张冠军, 陈足君, 等. 多孔夹芯层组合方式对夹层板隔声特性影响研究[J]. 噪声与振动控制, 2021, 41(3): 228-233. DOI: 10.3969/j.issn.1006-1355.2021.03.039

    WEI Bin, ZHANG Guanjun, CHEN Zujun, et al. Study on the influence of porous sandwich layer combination on sound insulation characteristics of sandwich panel[J]. Noise and Vibration Control, 2021, 41(3): 228-233(in Chinese). DOI: 10.3969/j.issn.1006-1355.2021.03.039

    [6] 吴孝巡. 颗粒增强蜂窝轻质夹层板隔声特性研究[D]. 武汉: 华中科技大学, 2022.

    WU Xiaoxun. Study on sound insulation characteristics of particle reinforced honeycomb lightweight sandwich panel[D]. Wuhan: Huazhong University of Science and Technology, 2022(in Chinese).

    [7] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.

    GAO Yukui. Negative Poisson's ratio metamaterials and structures[J]. Materials Engineering, 2021, 49(5): 38-47(in Chinese).

    [8] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究[J]. 爆炸与冲击, 2019, 39(6): 124-135.

    YANG Deqing, WU Binghong, ZHANG Xiangwen. Study on anti-explosion and impact resistance of star negative Poisson's ratio metamaterial protective structure[J]. Explosion and Shock, 2019, 39(6): 124-135(in Chinese).

    [9] 马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17): 81-87. DOI: 10.13465/j.cnki.jvs.2019.17.011

    MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. Dynamic properties of in-plane impact of concave triangular negative Poisson's ratio material[J]. Journal of Vibration and Shock, 2019, 38(17): 81-87(in Chinese). DOI: 10.13465/j.cnki.jvs.2019.17.011

    [10]

    GAI X L, GUAN X W, CAI Z N, et al. Acoustic properties of honeycomb like sandwich acoustic metamaterials[J]. Applied Acoustics, 2022, 199: 109016. DOI: 10.1016/j.apacoust.2022.109016

    [11] 赵心悦, 孙献娥, 杨小军, 等. 蜂窝与微穿孔声学结构研究进展及其在木结构建筑中的应用[J]. 林产工业, 2021, 58(2): 31-35. DOI: 10.19531/j.issn1001-5299.202102007

    ZHAO Xinyue, SUN Xian'e, YANG Xiaojun, et al. Research progress of honeycomb and micro-perforated acoustic structure and its application in wood structure building[J]. Forest Products Industry, 2021, 58(2): 31-35(in Chinese). DOI: 10.19531/j.issn1001-5299.202102007

    [12] 吴佳康, 柳政卿, 王秋成. 复合微穿孔板吸声结构声学性能预测[J]. 噪声与振动控制, 2022, 42(3): 203-208. DOI: 10.3969/j.issn.1006-1355.2022.03.036

    WU Jiakang, LIU Zhengqing, WANG Qiucheng. Acoustic performance prediction of sound-absorbing structure of composite microperforated plate[J]. Noise and Vibration Control, 2022, 42(3): 203-208(in Chinese). DOI: 10.3969/j.issn.1006-1355.2022.03.036

    [13] 徐稳, 王知杰, 朱雯雯, 等. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.

    XU Wen, WANG Zhijie, ZHU Wenwen, et al. Preparation and sound absorption performance of microperforated plate-polymer layered structural materials[J]. Chinese Journal of Materials Research, 2021, 35(7): 535-542(in Chinese).

    [14] 张丰辉, 唐宇帆, 辛锋先, 等. 微穿孔蜂窝-波纹复合声学超材料吸声行为[J]. 物理学报, 2018, 67(23): 120-130. DOI: 10.7498/aps.67.20181368

    ZHANG Fenghui, TANG Yufan, XIN Fengxian, et al. Sound absorption behavior of microperforated honeycomb-corrugated composite acoustic metamaterials[J]. Acta Physica Sinica, 2018, 67(23): 120-130(in Chinese). DOI: 10.7498/aps.67.20181368

    [15] 刘志恩, 袁金呈, 陈弯, 等. 复合微穿孔板吸声结构吸声特性分析及优化[J]. 声学技术, 2021, 40(4): 515-520. DOI: 10.16300/j.cnki.1000-3630.2021.04.012

    LIU Zhi'en, YUAN Jincheng, CHEN Wan, et al. Analysis and optimization of sound absorption characteristics of composite microperforated plate sound-absorbing structure[J]. Acoustic Technology, 2021, 40(4): 515-520(in Chinese). DOI: 10.16300/j.cnki.1000-3630.2021.04.012

    [16]

    LIU X, WANG C Q, ZANG Y M, et al. Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber[J]. International Journal of Mechanical Sciences, 2021, 199: 106426. DOI: 10.1016/j.ijmecsci.2021.106426

    [17]

    RAFIQUE F, WU J H, LIU C R, et al. Low-frequency sound absorption of an inhomogeneous micro-perforated panel with J-shaped cavities of different depths[J]. Acoustics Australia, 2022, 50(2): 203-214. DOI: 10.1007/s40857-021-00261-2

    [18]

    JIANG Y F, CHENG S, HAN M, et al. Design and optimization of micro-perforated ultralight sandwich structure with N-type hybrid core for broadband sound absorption[J]. Applied Acoustics, 2023, 202: 109184. DOI: 10.1016/j.apacoust.2022.109184

    [19]

    ZHANG Q L. Sound transmission through micro-perforated double-walled cylindrical shells lined with porous material[J]. Journal of Sound and Vibration, 2020, 485: 115539. DOI: 10.1016/j.jsv.2020.115539

    [20]

    WANG D W, WEN Z H, CHRIST G, et al. Sound absorption of face-centered cubic sandwich structure with micro-perforations[J]. Materials & Design, 2020, 186: 108344.

    [21] 胡齐笑, 丁善婷, 刘荻. 改进型传递矩阵法的多穿孔率复合微穿孔板吸声性能研究[J]. 机械科学与技术, 2020, 39(11): 1774-1781. DOI: 10.13433/j.cnki.1003-8728.20200271

    HU Qixiao, DING Shanting, LIU Di. Study on sound absorption performance of multi-perforation rate composite micro-perforation plate by improved transfer matrix method[J]. Mechanical Science and Technology, 2020, 39(11): 1774-1781(in Chinese). DOI: 10.13433/j.cnki.1003-8728.20200271

    [22] 王卫辰, 邢邦圣, 顾海霞, 等. 微穿孔板几何参数估算及其对吸声性能的影响[J]. 声学学报, 2019, 44(3): 369-375. DOI: 10.15949/j.cnki.0371-0025.2019.03.012

    WANG Weichen, XING Bangsheng, GU Haixia, et al. Estimation of geometric parameters of micro-perforated plate and its influence on sound absorption performance[J]. Acta Acoustica Sinica, 2019, 44(3): 369-375(in Chinese). DOI: 10.15949/j.cnki.0371-0025.2019.03.012

    [23] 沈佳熔, 吴懋亮, 王齐盛, 等. 材料负泊松比结构研究综述[J]. 机械制造, 2023, 61(8): 47-56. DOI: 10.3969/j.issn.1000-4998.2023.08.013

    SHEN Jiarong, WU Maoliang, WANG Qisheng, et al. Review of negative Poisson's ratio structure of materials[J]. Machinery Manufacturing, 2023, 61(8): 47-56(in Chinese). DOI: 10.3969/j.issn.1000-4998.2023.08.013

    [24] 王义平, 李凤莲, 吕梅. 波纹-负泊松比蜂窝混合芯夹层板的自由振动[J]. 科学技术与工程, 2023, 23(14): 5963-5969. DOI: 10.12404/j.issn.1671-1815.2023.23.14.05963

    WANG Yiping, LI Fenglian, LYU Mei. Free vibration of corrugated-negative Poisson's-ratio honeycomb hybrid sandwich panel[J]. Science Technology and Engineering, 2023, 23(14): 5963-5969(in Chinese). DOI: 10.12404/j.issn.1671-1815.2023.23.14.05963

    [25]

    QIN D C, LI M C, WANG T T, et al. Design and mechanical properties of negative Poisson's ratio structure-based topology optimization[J]. Applied Sciences, 2023, 13(13): 7728. DOI: 10.3390/app13137728

    [26]

    KUN Y, FEI T, BO W Y, et al. Study on impact energy absorption performance and optimization of negative Poisson's ratio structure[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(6): 328. DOI: 10.1007/s40430-023-04253-3

    [27]

    LIU S, WANG K F, WANG B L. Buckling and vibration characteristic of anisotropic sandwich plates with negative Poisson's ratio based on isogeometric analysis[J/OL]. Mechanics of Advanced Materials and Structures, 2023: 1-16[2022-03-25]. Website: doi.org/10.1080/15376494.2023. 2222280. DOI: 10.1080/15376494.2023.2222280

    [28]

    ZHANG Z J, ZHANG L, DONG Y Y. Mechanical properties of negative Poisson's ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure[J]. Materials Letters, 2023, 331: 133451. DOI: 10.1016/j.matlet.2022.133451

    [29] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13): 51-59. DOI: 10.13465/j.cnki.jvs.2021.13.007

    YU Kejiong, XU Fengxiang, HUA Lin. Study on in-plane impact performance of sinusoidal curved side negative Poisson's ratio honeycomb structure[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59(in Chinese). DOI: 10.13465/j.cnki.jvs.2021.13.007

  • 期刊类型引用(12)

    1. 龙国文,曾开华,谢帮华,田海,邱智坚. 相变混凝土复合材料的性能研究综述及展望. 功能材料. 2024(10): 10038-10046 . 百度学术
    2. 陈春鸣,张燕,彭建山. 轻质相变混凝土物理力学性能研究进展. 化工新型材料. 2024(S2): 294-298 . 百度学术
    3. 肖桐,刘庆祎,张家豪,赵佳腾,刘昌会. 热固性树脂基复合相变材料的制备及其储能强化研究进展. 复合材料学报. 2023(03): 1311-1327 . 本站查看
    4. 张宇,恽定康,邱菊. 冻融循环下相变混凝土剪力墙抗震性能研究. 徐州工程学院学报(自然科学版). 2023(01): 42-49 . 百度学术
    5. 张家玮,黄玮,黄大建,李旭辉,马建虎,郑永. 基于微孔漂珠的相变微胶囊制备及其对砂浆力学和热性能影响. 复合材料学报. 2023(08): 4703-4719 . 本站查看
    6. 于文艳,殷凯. 复合相变蓄热涂层的蓄放热调温特性. 科学技术与工程. 2023(31): 13492-13498 . 百度学术
    7. 蔡昕辰,刘志彬,张云,白梅,刘锋. 相变材料在道路工程中的应用研究进展. 功能材料. 2021(12): 12013-12021 . 百度学术
    8. 周建庭,聂志新,郭增伟,杨娟,郑忠. 相变混凝土的制备与性能研究综述. 江苏大学学报(自然科学版). 2020(05): 588-595 . 百度学术
    9. 刘朋,缪正坤,田国华,刘伟,王东. 不同工况下陶粒吸附相变石蜡试验研究. 江苏科技信息. 2019(04): 44-46 . 百度学术
    10. 司亚余,马芹永,罗小宝,顾皖庆,白梅. 癸酸-正辛酸与活性炭复合相变材料的制备. 安徽理工大学学报(自然科学版). 2019(03): 66-72 . 百度学术
    11. 马芹永,白梅. 珍珠岩基相变骨料混凝土断裂特性试验与分析. 建筑材料学报. 2018(03): 365-369 . 百度学术
    12. 顾皖庆,马芹永,白梅,罗小宝,司亚余. 月桂醇膨胀珍珠岩复合相变材料吸附试验与分析. 科学技术与工程. 2018(25): 230-235 . 百度学术

    其他类型引用(21)

  • 蜂窝夹层板结构作为一种简单高效的隔/吸声结构,因其轻质性、高的比强度和比刚度,常被应用到各类载运设备的蒙皮结构中,以此来提升载运设备的隔/吸声性能。为了使得蜂窝夹层板结构在500~950Hz频率范围内有更好的吸声性能,提出了一种优化后的负泊松比内凹六边形蜂窝夹层板结构,该结构上面板为微穿孔板,夹芯层为负泊松比内凹六边形蜂窝,其由19个具有内延伸管的单元腔体谐振器构成。

    采用COMSOL仿真软件对负泊松比内凹六边形蜂窝夹层板结构在目标频率范围内进行吸声系数的计算,并运用B&K驻波管测量系统对仿真结果的有效性进行了验证。在保持负泊松比内凹六边形蜂窝胞元结构不变的前提下,设计了不同尺寸的管径和管长来研究蜂窝夹层板在500~950Hz频率范围内的吸声性能,同时,采用COMSOL仿真软件研究了胞元参数对蜂窝夹层板结构吸声系数的影响,研究结果表明:当胞元倾角增大、内延伸管孔隙率减小、腔体壁厚减小时,结构的吸声性能增强。腔体深度的增加和内延伸管管长的增加都会导致共振频率向更低频方向移动,其中腔体深度的改变更为明显。在500~950Hz频率范围内,该结构比传统蜂窝夹层板结构的平均吸声系数提升了5.64%,泊松比内凹六边形蜂窝夹层板结构在低频范围内有着优秀吸声性能。

    (a)胞元的结构以及空间排布方式;(b)负泊松比内凹六边形蜂窝结构和传统六边形蜂窝结构的频率-吸声系数曲线

图(14)  /  表(4)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  226
  • PDF下载量:  70
  • 被引次数: 33
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回