Abstract:
For the thermoplastic composites prepared by domestic T300 grade carbon fiber reinforced high performance poly aryl ether ketone resin prepreg (SCF35/PAEK-L), the impact damages generated by different impact energies were repaired by hot pressing process. The compressive strength was used to evaluate the repair effect of composite impact damage, and Micro-CT was utilized to study the microscopic morphology of composites before and after repair. The results show that the impact damage repair effect of the composite is affected by the hot pressing repair process, and the compression strength of the composite shows a trend of increasing and then decreasing as the repair temperature increases. The lower repair temperature and higher repair pressure are able to obtain similar compression strength with higher repair temperature and lower repair pressure. The repair effect of the composite material is influenced by the degree of impact damage, and the compressive strength of the composite material after repair gradually decreases as the degree of impact damage increases. The repaired compressive strength of the composites with standard energy impact recoveres to ~70% of the compression strength in the undamaged state, which is ~417 MPa, and when the composite material has penetration damage, its compressive strength after repair recovers to 56%, which is ~334 MPa.