展宽布/网胎针刺C/C复合材料制备及力学性能

陶洋, 李存静, 逄增媛, 张典堂

陶洋, 李存静, 逄增媛, 等. 展宽布/网胎针刺C/C复合材料制备及力学性能[J]. 复合材料学报, 2024, 41(4): 1934-1944. DOI: 10.13801/j.cnki.fhclxb.20230922.004
引用本文: 陶洋, 李存静, 逄增媛, 等. 展宽布/网胎针刺C/C复合材料制备及力学性能[J]. 复合材料学报, 2024, 41(4): 1934-1944. DOI: 10.13801/j.cnki.fhclxb.20230922.004
TAO Yang, LI Cunjing, PANG Zengyuan, et al. Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1934-1944. DOI: 10.13801/j.cnki.fhclxb.20230922.004
Citation: TAO Yang, LI Cunjing, PANG Zengyuan, et al. Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1934-1944. DOI: 10.13801/j.cnki.fhclxb.20230922.004

展宽布/网胎针刺C/C复合材料制备及力学性能

基金项目: 173重点项目(2022-JCJQ-ZD-067-11);国家自然科学基金(11702115;12072131);173领域基金(2021-JCJQ-JJ-0211)
详细信息
    通讯作者:

    张典堂,博士,研究员,博士生导师,研究方向为新型编材结构设计及力学性能评价 E-mail: zhangdiantang@jiangnan.edu.cn

  • 中图分类号: TB332

Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites

Funds: National Defense Basic Scientific Research Program of China (2022-JCJQ-ZD-067-11); National Natural Science Foundation of China (11702115; 12072131); National Defense Domain Foundation of China (2021-JCJQ-JJ-0211)
  • 摘要: 为提高针刺碳/碳(C/C)复合材料致密化效率和承载性能,分别设计了16 mm展宽布与网胎交替叠层的针刺预制体(B-NPs)、8 mm展宽布与网胎交替叠层的针刺预制体(H-NPs)及外层采用B-NPs结构、内层采用H-NPs结构的针刺预制体(T-NPs),联合化学气相渗透和浸渍-碳化工艺制备了3种针刺C/C复合材料。采用阿基米德排水法和X射线计算机断层扫描(Micro-CT)技术对3种针刺C/C复合材料的致密化效率、孔隙率和孔隙分布进行了统计,并开展了常温下三点弯曲力学性能测试。结果表明:随着展宽纱线宽度的增加,针刺C/C复合材料致密化效率得到提高,内部孔隙率有所下降。在相同的致密化时间内,B-NPs增密效果最佳,密度达到1.42 g/cm3,孔隙率仅为10.67%。三点弯曲载荷下,3种材料均表现出脆性破坏,其中T-NPs的弯曲强度和弯曲模量分别为173.04 MPa和20.66 GPa,具有优异的抗弯性能。3种材料的初始破坏位置均发生在针刺纤维束附近,其中低孔隙率的B-NPs针刺纤维束和碳布层破坏以纤维断裂为主;高孔隙率的H-NPs纤维/基体界面结合能力差,碳布层的破坏以纤维/基体界面脱粘和纤维拔出为主导。

     

    Abstract: In order to improve the densification efficiency and load-bearing performance of needle punched carbon/carbon (C/C) composites, needle punched preforms B-NPs with 16 mm spreading coth and felt tire alternating layers, needle punched preforms H-NPs with 8 mm spreading coth and felt tire alternating layers, and needle punched preforms T-NPs with B-NPs structure on the outer layer and H-NPs structure on the inner layer were designed. Three types of needle punched C/C composites were prepared by combining chemical vapor infiltration and impregnation-carbonization processes. The densification efficiency, porosity and pore distribution of three kinds of needle punched C/C composites were statistically analyzed by Archimedes drainage method and X-ray computed tomography (Micro-CT) technology, and three-point bending mechanical properties were tested at room temperature. The results indicate that as the width of the widened yarn increases, the densification efficiency of the needle punched C/C composite material is improved, and the internal porosity decreases. Within the same densification time, B-NPs have the best densification effect, with a density of 1.42g/cm3 and a porosity of only 10.67%. Under three-point bending load, the three materials all show brittle failure. The bending strength and flexural modulus of T-NPs are 173.04 MPa and 25.03 GPa respectively, which have excellent bending resistance. The initial failure of the three materials all occurs near the needle punched fiber bundle, with fiber fracture being the main failure mode for the low porosity B-NPs needle punched fiber bundle and carbon cloth layer; High porosity H-NPs fiber/matrix interface has poor bonding ability, and the failure of carbon cloth layer is dominated by fiber/matrix debonding and fiber pullout.

     

  • 聚合物电介质薄膜凭借其低介电损耗、易加工成型、高击穿强度等优点,已广泛应用于医用除颤设备、柔性电子器件、脉冲功率系统、摩擦纳米发电机等[1-2]。随着混合电动汽车、油气勘探技术、航天电力系统的发展及应用环境的复杂化,对聚合物基电介质薄膜宽温域内的介电性能和击穿强度提出更高要求[3-4]。目前广泛使用的聚合物电介质薄膜为双向拉伸聚丙烯(BOPP),但由于BOPP的热稳定性欠佳,高温下的介电稳定性和击穿强度急剧下降,无法满足上述应用需求[5]

    为了制备高温、强电场等极端环境中具有良好稳定性的聚合物电介质薄膜,有学者选择具有高玻璃化转变温度(Tg)的芳香族聚合物,如聚酰亚胺(PI)、聚醚酰亚胺(PEI)、聚芳醚酮(PEEK)、聚芳醚脲(PEEU)等制备了高温电介质薄膜,但研究发现虽然其在高温、强电场环境中的介电性能保持稳定,但击穿强度迅速下降[6]。这可归因于温度场-电场耦合环境中芳香族聚合物分子结构中苯环的π-π耦合作用引起的高漏电流密度[7]。为了降低漏电流对芳香族聚合物电介质薄膜的影响,Duan等[8]将交联结构引入到PEI分子结构中制备不同交联度的c-PEI,交联结构在增加PEI内部电子陷阱能级和陷阱密度的同时,打破了分子结构的规整性,降低了π-π耦合效应,抑制了高温、强电场环境中漏电流的形成,所制备c-PEI高温下的击穿强度较非交联PEI显著提升。此外,采用密度泛函理论(DFT)分析发现,PI分子结构中酸酐上的苯环带有正电性,PEI分子中连接醚键的苯环带有负电性,因此,Zhang等[9]将PI和PEI共混,利用分子链间静电作用降低了PI和PEI分子链间距以及内部自由体积,所制备的PI-PEI共混薄膜的最高击穿强度超过1000 MV/m。但需要指出的是,由于聚合物的击穿强度(E)与其介电常数(ε)存在内禀矛盾关系(E~1/ε0.65),即击穿强度的提升往往伴随着介电常数的下降,进而影响到聚合物电介质薄膜储能特性的改善[10]。因此,如何制备同时具有高介电常数和高击穿强度的聚合物电介质薄膜是目前的研究热点。

    为了打破介电常数与击穿强度间的内禀矛盾,有学者基于不同聚合物功能层(极化层、绝缘层、过渡层等),通过调控空间组装工艺构筑了多层聚合物电介质薄膜[11]。在多层结构中,特殊的空间电场分布机制赋予绝缘层更高的电场强度,而极化层和多尺度界面结构则通过偶极子极化和Maxwell-Wagner-Sillars (MWS)界面极化提升了介电常数[12-13]。Wang等[14]通过PEI和聚(偏氟乙烯-三氟乙烯-三氟氯乙烯)(PTVC)构筑了顺式三层结构和反式三层结构的全有机聚合物电介质薄膜,研究发现顺式三层结构的最大击穿强度达到504 MV/m,并且介电常数在室温−100℃范围内保持稳定。但遗憾的是,目前多层结构电介质薄膜的研究大多局限于铁电聚合物,无法满足高温应用需求[11, 15]

    近期,Su等[16]采用去质子化法制备了芳纶纳米纤维(ANF)并抽滤得到ANFm,研究发现ANFm具有较高的介电常数和优异的高温稳定性,所制备的ANFm能够满足高温环境的应用需求,但由于ANFm表面粗糙度较高,易诱导空间电荷聚集,导致击穿强度较低。Vu等[17]基于ANF与氟化石墨烯(GF)制备了ANFm-GF电介质薄膜,结果表明,由于GF的高本征击穿强度(~1000 MV/m) ANFm-GF电介质薄膜在室温下最大击穿强度提升至507 MV/m。但在高温下,电极处注入的电子以及空间电荷在ANFm表面缺陷处的聚集诱导了电树枝的形成并引发电击穿,引起ANFm击穿强度迅速降低(<300 MV/m)[18]。因此,改善ANFm的表面粗糙度有助于提升其高温击穿强度。

    本文选用ANFm和可溶性PI,采用浸渍提拉法构筑了具有三明治结构的全有机PI-ANFm-PI (P-A-P)复合薄膜。ANFm具有较高的介电常数以及出众的热学稳定性能;PI具有极高的击穿强度和玻璃化温度,能够满足高温电介质材料的应用需求。研究结果发现,ANFm表面粗糙度的降低以及P-A-P复合薄膜内部电子-空穴对的构建有效抑制了漏电流的形成;同时ANFm的高极化率可为P-A-P复合薄膜提供高介电常数;本文通过分析P-A-P复合薄膜的介电性能、电导损耗和击穿强度以期为制备新型高温电介质薄膜提供新思路和新方法。

    芳纶(PPTA),日本帝人芳纶公司;二甲基亚砜(DMSO),分析纯,天津市科密欧化学试剂有限公司;聚酰亚胺(PI),型号P84,美国杜邦公司;KOH,纯度98%,阿拉丁试剂(上海)有限公司;N-甲基吡咯烷酮(NMP),分析纯,上海凌峰化学试剂有限公司。上述试剂直接使用,无需提纯。

    首先将剪切得到的PPTA短纤(长度约1 mm)分别用丙酮、乙醇超声处理30 min,以除去表面污染物;随后将0.08 g芳纶短纤分散于含有0.16 g KOH的40 mL DMSO∶H2O(体积比为25∶1)混合溶液中,室温下超声处理4 h后得到暗红色ANF/DMSO溶液。将适量去离子水加入到ANF/DMSO溶液中,高速搅拌后形成ANF胶体悬浮液,随后采用真空抽滤方法制备ANFm,并在80℃下干燥12 h。

    将PI粉末溶解于NMP中分别制备1wt%、3wt%、5wt%、7wt%和10wt%的PI溶液,随后将ANFm垂直浸渍于PI溶液中,并采用浸渍5 min,提拉静置1 min的方式循环5次;将浸渍得到的ANFm至于100℃中干燥12 h,并在10 MPa,180℃条件下热压5 min。为了方便描述所制备的PI-ANFm-PI (P-A-P)复合薄膜,根据溶液中PI的质量分数分别将P-A-P复合薄膜命名为P-A-P-1、P-A-P-3、P-A-P-5、P-A-P-7、P-A-P-10 (表1);单层ANF薄膜命名为ANFm。所制备的ANFm和P-A-P复合薄膜的厚度约为15 μm,PI单层厚度为0~0.2 μm。此外,需要指出的是,对比发现P-A-P-10中PI层的厚度反而略低于P-A-P-7,这可能是由于PI溶液浓度过高后,分子链间缠结点增加,导致黏附或进入ANFm的PI减少。ANFm和P-A-P复合薄膜的制备流程如图1所示。

    表  1  材料参数
    Table  1.  Materials parameters
    Samples outer
    layer
    Middle
    layer
    Thickness of
    sample/μm
    Concentration of
    PI solution/wt%
    P-A-P-1 PI ANF 14.7 1
    P-A-P-3 14.9 3
    P-A-P-5 15.2 5
    P-A-P-7 15.0 7
    P-A-P-10 14.6 10
    Notes: PI—Polyimide; ANF—Aramid nanofiber.
    下载: 导出CSV 
    | 显示表格
    图  1  芳纶纳米纤维薄膜 (ANFm)和PI-ANFm-PI (P-A-P)薄膜的制备流程图
    Figure  1.  Scheme of fabrication procedures for aramid nanofiber film (ANFm) and polyimide-ANFm-polyimide (P-A-P) films
    PPTA—Poly-p-phenylene terephthamide; NMP—N-methylpyrrolidone; DMSO—Dimethyl sulphoxide

    红外测试:采用Nicolet 6700型傅里叶变换红外光谱仪(FTIR,美国赛默飞世尔科技公司),测试波数范围为4000~500 cm−1。X射线衍射(XRD)测试:D/max-2550PC型,日本理学公司,靶材Cu,管电压40 V,管电流40 mA,扫描范围为5°~90°,波长0.154 nm。AFM测试:Dimension FastScan型,德国布鲁克公司,采用敲击模式,扫描范围2 μm×2 μm。SEM测试:S4800型场发射扫描电子显微镜,日本Hitachi公司。TEM测试:JEM-2100型透射电子显微镜,日本电子株式会社。介电性能测试:Concept 40型宽频介电阻抗谱仪,德国Novocontrol公司,频率范围101~106 Hz,测试温度分别为25℃和150℃。击穿强度测试:CS9916BX型程控超高压分析仪,南京长盛公司,每个样品测试12次,并通过Weibull分布拟合得到Weibull击穿强度。

    采用Gaussview5.0和Gaussian09 W计算了ANF和PI的电子结构和能级分布。在密度泛函理论(DFT)计算中,所用基组为B3LYP/6-31G(d),并且仅使用ANF和PI分子结构中的一个结构单元进行计算。通过Multiwfn程序分析了ANF和PI的静电势(ESP)分布[19-21]

    图2(a)为去质子化过程中ANF/DMSO分散液的光学图片,从图中可以看到,随着时间的增加,ANF/DMSO溶液的颜色逐渐变深,4 h后变为暗红色均相溶液。这是由于在KOH作用下,PPTA分子链上的氢原子逐渐去质子化,削弱了分子链间的氢键作用,PPTA纤维逐渐转变为ANF。Yang等[22]研究发现,由于PPTA分子链中π-π堆叠效应及分子链间范德华力相互作用,PPTA纤维无法完全溶解于DMSO,而是以纳米纤维的形式存在。从图2(b)中可以看到,所制备的ANF具有高长径比。上述结果表明,通过调控DMSO和H2O的比例能够在短时间内制备得到ANF,比仅采用纯DMSO溶剂制备ANF的方法更高效[16]。对比ANF与PPTA的FTIR谱图发现(图2(c)),ANF和PPTA中特征峰位置基本相同,表明采用去质子化方法制备的ANF化学结构没有发生明显变化,这有利于保持其高强度、高绝缘和高温稳定性能。图2(d)为ANF和PPTA的XRD图谱。在PPTA的XRD谱图中2θ=21.1°、23.5°和28.5°的特征峰分别对应(110)、(200)和(004)晶面;在ANF的XRD谱图中,只在2θ=21.1°处出现了(110)晶面的特征衍射峰,而(200)和(004)晶面的衍射峰强度显著下降,表明ANF内部晶体结构与PPTA一致,只是晶粒尺寸发生了变化[23]。采用谢乐公式(D=0.89λ/(βcosθ),其中D为晶粒尺寸,λ为波长,β为半峰宽,θ为衍射角)计算了PPTA和ANF的晶粒尺寸,结果发现PPTA中(110)晶面对应的晶粒尺寸为5.27 nm,而ANF中(110)晶面对应的晶粒尺寸降低至1.46 nm。晶粒尺寸的降低可归因于去质子化过程中分子链间氢键网络的破坏扰乱了PPTA分子链的规整排列,进而引起分子链从有序结构转变为无序结构[24]

    图  2  (a)去质子化过程中ANF/DMSO分散液的光学图片;ANF的TEM图像(b)、PPTA和ANF的红外光谱(c)和XRD谱图(d)
    Figure  2.  (a) Digital photos of an aramid nanofiber (ANF)/DMSO dispersion during deprotonation process; TEM image of ANF (b), FTIR spectra (c) and XRD patterns (d) of PPTA and ANF

    图3(a)展示了ANFm横截面形貌,从图中可以看到,ANFm呈现致密的珍珠层状结构,而P-A-P-3 (图3(b))和P-A-P-7 (图3(c))具有明显的三层结构,其中上下层为PI (箭头所示),中间层为ANFm,并且PI层和ANFm层结合紧密,没有明显的孔隙。图3(d)~3(f)分别为ANFm、P-A-P-3和P-A-P-7的表面形貌,其中,ANFm表面凹凸不平,纤维堆积结构明显;而随着PI溶液浓度的增加,P-A-P-3和P-A-P-7的表面逐渐光滑平整,缺陷明显减少。从ANFm、P-A-P-3和P-A-P-7 (图3(g)~3(i))的光学图片可知,随着PI溶液浓度的增加,薄膜的颜色逐渐加深,间接表明PI层的厚度逐渐增大。Luo等[25]研究发现,当电介质薄膜表面粗糙程度较高时,空间电荷以及越过电极/电介质界面势垒的电子会聚集在电介质薄膜的缺陷处,长时间累积后诱导电击穿的发生。因此,减少电介质薄膜的表面缺陷,有助于阻碍电极中电子的注入以及电树枝的形成与发展,在提升击穿强度的同时,降低内部漏电流密度。

    图  3  横截面形貌:ANFm (a)、P-A-P-3 (b)、P-A-P-7 (c);表面形貌:ANFm (d)、P-A-P-3 (e)、P-A-P-7 (f);光学图片:ANFm (g)、P-A-P-3 (h)、P-A-P-7 (i)
    Figure  3.  Cross-sectional morphologies of ANFm (a), P-A-P-3(b), and P-A-P-7 (c); Surface morphologies of ANFm (d), P-A-P-3 (e), and P-A-P-7 (f); Digital photos of ANFm (g), P-A-P-3 (h), and P-A-P-7 (i)

    击穿强度是影响聚合物电介质薄膜储能特性的关键参数之一。采用威布尔分布函数分析了ANFm和P-A-P复合薄膜在25℃和150℃时的击穿强度,如图4(a)4(b)所示。可以看到,在宽温域范围内,三层结构复合薄膜的击穿强度均优于单层ANFm,表明PI层有助于提升ANFm的击穿强度。在图4(c)中,P-A-P复合薄膜在25℃和150℃时击穿强度分别为259.8 MV/m和242.3 MV/m,而P-A-P-7复合薄膜在相同温度下的击穿强度达411.6 MV/m和350.7 MV/m,相较于ANFm提升了58.4%和44.7%。研究表明,在多层电介质材料中,绝缘层承担更高的电场强度,极化层提供高介电常数[26]。在本文中,上下PI层为绝缘层,ANFm层为极化层,当三层结构形成后,PI层承担更高的电场强度,ANFm层上的电场强度迅速下降。由于聚合物的击穿机制主要包括电-机械击穿、热击穿、电击穿等[27]。因此,提升聚合物的杨氏模量、导热性能和绝缘性能均有助于改善其击穿强度。从图4(d)中可知,随着PI层溶液浓度的增加,P-A-P复合薄膜的杨氏模量从ANFm的1.59 GPa增加至P-A-P-7的2.87 GPa,而P-A-P-10杨氏模量下降的原因可归因于PI层厚度的降低。由于聚合物击穿强度与其杨氏模量成正比关系,即E=0.606(Y/(εrε0))1/2 (E为击穿强度,εr为聚合物本征介电常数,ε0为真空介电常数,Y为杨氏模量)[28]。因此,杨氏模量的提升有助于抑制电-机械击穿的发生。从图4(e)可知,P-A-P复合薄膜的漏电流密度也随着PI浓度的增加逐渐降低,这不但抑制了P-A-P复合薄膜内部电击穿的发生,同时降低了内部漏电流引起的热效应,避免了热击穿的发生。图4(f)为ANFm、P-A-P-3和P-A-P-7击穿强度、漏电流密度和杨氏模量的雷达图,可以看到,P-A-P-7的杨氏模量和击穿强度最高,漏电流密度最低,表明PI层厚度的增加有助于优化ANFm的电学性能。

    图  4  ANFm和P-A-P复合薄膜25℃ (a)和150℃ (b)的击穿强度威布尔分布、25℃和150℃的击穿强度对比图(c)、力学性能(d)和漏电流密度(e);(f) ANFm、P-A-P-3和P-A-P-7薄膜击穿强度、漏电流密度和杨氏模量的雷达图
    Figure  4.  Weibull distribution of breakdown strength at 25℃ (a) and 150℃ (b), comparison of breakdown strength at 25℃ and 150℃ (c), mechanical properties (d), and leakage current density (e) for ANFm and P-A-P composite films; (f) Radar chart of breakdown strength, leakage current density, and Young's modulus for ANFm, P-A-P-3, and P-A-P-7 films
    E—Breakdown strength; P—Polarization intensity

    为了进一步分析ANFm和P-A-P复合薄膜漏电流密度变化的内在机制,采用密度泛函理论(DFT)分析了PI和ANF的电子轨道能级和静电势(ESP)分布。PI和ANF的ESP分布如图5(a)5(b)所示。可以看出,ANF的最高静电势达到45,而PI最高仅为20,表明ANF具有更强的吸引电子的能力,可以作为电子陷阱位点捕获电极处注入以及内部形成的自由电子[29]。在图5(c)中,PI的最高占据分子轨道(HOMO)能级为−6.01 eV,最低占据分子轨道(LUMO)能级为−3.27 eV,禁带宽度为2.74 eV;ANF的HOMO能级为−5.63 eV,LUMO能级为−1.99 eV,禁带宽度为3.64 eV。虽然PI的禁带宽度低于ANF,高温下易形成自由电子,但由于PI的LUMO能级与ANF的HOMO能级差别较小(2.36 eV),PI层的电子与ANF的空穴在库仑力的作用下形成电子-空穴对(图5(d)),并作为电子陷阱捕获空间电荷[30-31]

    图  5  PI (a)和ANF (b)的静电势分布及各静电势范围内的面积百分比;(c) PI和ANF的分子轨道能级示意图;(d)电子-空穴对的形成与作用机制
    Figure  5.  Electrostatic potential (ESP) distributions and normalized ESP area distribution statistics of PI (a) and ANF (b); (c) Molecular orbital energy levels of PI and ANF; (d) Formation and mechanism of action of electron-hole pairs
    LUMO—Lowest unoccupied molecular orbital; HOMO—Highest occupied molecular orbital

    ANFm和P-A-P复合薄膜的介电性能如图6所示。在图6(a)中,ANFm的介电常数高达7.2(102 Hz),这归因于ANF表面丰富的极性基团以及内部高偶极矩酰胺键(~3.7 D)的存在。此外,P-A-P复合薄膜的介电常数对频率的依赖性明显降低。由于聚合物介电常数主要源于空间电荷极化,偶极子极化,原子极化和离子极化;其中原子极化和离子极化发生在高频率范围内(>108 Hz)[32-33]。因此,本文中P-A-P复合薄膜介电常数主要源于空间电荷极化(<104 Hz)和偶极子极化(104~106 Hz)。在低频率范围内,PI层的形成不但抑制了界面处空间电荷的聚集,同时PI和ANF内部电子-空穴对以及分子链间氢键网络的构建阻碍了载流子的迁移,降低了P-A-P复合薄膜的空间电荷密度,因此,P-A-P复合薄膜在低频率范围内的空间电荷极化强度随着PI溶液浓度的增加逐渐降低。同时,PI层的形成还引起P-A-P复合薄膜介电常数的降低。另外,PI较低的介电常数也会引起P-A-P复合薄膜介电常数的下降[34]。介电损耗会将电介质电容器储存的电能转化为焦耳热,降低电介质薄膜的使用寿命和效率。图6(b)为ANFm和P-A-P复合薄膜介电损耗与频率的关系。可以看到,在频率范围内,随着PI溶液浓度的增加,P-A-P复合薄膜的介电损耗逐渐降低,表明PI层的形成有助于降低P-A-P复合薄膜服役过程中能量的损耗以及抑制热效应的形成。图6(c)为ANFm和P-A-P复合薄膜在频率范围内的交流电导率。ANFm和P-A-P复合薄膜的交流电导率均与测试频率呈良好的线性关系,表明其均具有优异的绝缘性能[35]。此外,10 Hz时,ANFm和P-A-P复合薄膜的交流电导率随着PI层厚度的增加不断下降,如样品的交流电导率从2.88×10−13 S/cm(ANFm)降至3.63×10−14 S/cm (P-A-P-7),说明PI层的形成有助于进一步提升P-A-P复合薄膜的绝缘性能。

    图  6  ANFm和P-A-P复合薄膜的介电常数(a)、介电损耗(b)和电导率(c);P-A-P-7在25℃和150℃下的介电常数(d)、介电损耗(e)和电导率(f)
    Figure  6.  Dielectric constant (a), dielectric loss (b) and conductivity (c) of ANFm and P-A-P films; Dielectric constant (d), dielectric loss (e) and conductivity (f) of P-A-P-7 at 25℃ and 150℃

    此外,在25℃和150℃时对比分析了P-A-P-7的介电性能。在图6(d)中,P-A-P-7在150℃时的介电常数均高于25℃时的介电常数,尤其是在102~103 Hz范围内提升显著。这是由于随着温度的升高,从电极处注入的电子以及被束缚的电子热激发形成自由电子引起空间电荷极化强度增大;同时,PI和ANF分子链段的运动能力也随着温度的升高逐渐增加,进而增强了偶极子的取向极化。在图6(e)中,当频率低于104 Hz时,P-A-P-7的电导损耗在150℃时增加显著,这主要源于空间电荷的增加。在25℃时,电极处的电子无法越过电极/电介质间的界面势垒进入电介质,同时PI和ANF形成的电子-空穴对以及分子链间的氢键网络均会抑制空间电荷的迁移;但150℃时,电极处的电子吸收热能越过界面势垒,同时被电子-空穴对束缚的电荷热激发形成自由电子,引起电导损耗迅速增大。在图6(f)中,10 Hz时,P-A-P-7的电导率从25℃时的3.63×10−14 S/cm增加至150℃时的1.45×10−12 S/cm,也进一步表明高温下漏电流密度的增加。但需要指出的是,虽然P-A-P-7在150℃时介电损耗和电导率均有所增大,但依然保持在较低的范围,满足电介质薄膜的使用要求。

    本文基于芳纶纳米纤维薄膜(ANFm)和聚酰亚胺(PI)溶液,采用浸渍提拉法构筑了具有三明治结构的全有机PI-ANFm-PI (P-A-P)复合薄膜,并研究了宽温域内P-A-P复合薄膜的击穿强度、电导损耗和介电性能,主要结论如下:

    (1) ANFm表面粗糙度的降低以及PI与ANF形成的电子-空穴对有助于降低P-A-P复合薄膜的漏电流密度,减低电导损耗;

    (2)随着PI浓度的增加以及内部漏电流密度的降低,P-A-P复合薄膜的在25℃和150℃下的击穿强度达411.6 MV/m和350.7 MV/m,较ANF薄膜分别提升了58.4%和44.7%;

    (3) PI层的形成提升了P-A-P复合薄膜的介电稳定性,并且介电损耗随着PI溶液浓度的增加逐渐降低,绝缘性能随着PI溶液浓度的增加逐渐增大。

  • 图  1   针刺预制体铺层结构设计

    Figure  1.   Design of needle punched prefabricated layer structure

    B-NPs—16 mm spreading coth and felt lamination layers; H-NPs—8 mm spreading coth and felt lamination layers; T-NPs—Outer layer is made of 16 mm spreading cloth with mesh tire lamination, while the inner layer is made of 8 mm spreading cloth with felt lamination

    图  2   三点弯曲实验装置及加载方式

    Figure  2.   Three point bending experimental device and loading method

    图  3   化学气相渗透(CVI)工艺致密化密度变化

    Figure  3.   Density variation during chemical vapor infiltration (CVI) densification process

    图  4   T700-12K碳纤维纱线展宽微观结构

    Figure  4.   Microstructure of T700-12K carbon fiber yarn stretching

    图  5   3种预制体热解碳沉积简化模型

    Figure  5.   Simplified models for pyrolysis carbon deposition of three types of preforms

    图  6   LPI工艺致密化密度变化

    Figure  6.   Density change during LPI process densification

    图  7   3种预制体液相浸渍-碳化简化模型

    Figure  7.   Simplified models for impregnation-carbonization of three types of prefabricated bodies

    图  8   展宽布/网胎针刺C/C复合材料内部孔隙统计

    Figure  8.   Internal pore statistics of spreading cloth/felt needled C/C composites

    图  9   展宽布/网胎针刺C/C复合材料孔隙分布特征:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  9.   Pore distribution characteristics of spreading cloth/felt needle punched C/C composites: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  10   展宽布/网胎针刺C/C复合材料三点弯曲载荷-位移曲线

    Figure  10.   Three point bending load-displacement curves of spreading cloth/felt needle punched C/C composites

    图  11   展宽布/网胎针刺C/C复合材料弯曲强度和模量

    Figure  11.   Bending strength and modulus of spreading cloth/felt needle punched C/C composites

    图  12   弯曲载荷下针刺C/C复合材料宏观损伤形貌

    Figure  12.   Macroscopic damage morphologies of needle punched C/C composites under bending load

    图  13   针刺C/C复合材料损伤机制示意图:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  13.   Schematic diagram of damage mechanism of needle punched C/C composite material: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  14   X射线计算机断层扫描(Micro-CT)针刺预制体内部形貌:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  14.   Morphology of X-ray computed tomography (Micro-CT) needle preformed body: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  15   展宽布/网胎针刺C/C复合材料三点弯曲损伤SEM图像

    Figure  15.   SEM images of three-point bending damage of spreading cloth/felt needle punched C/C composite material

    表  1   针刺基布与网胎性能参数

    Table  1   Performance parameters of needle punched substrate and carbon fiber felt

    Material Thickness/mm Surface density/(g·m−2) Yarn density/(yarn·10 cm−1) Size/mm2
    16 mm spreading carbon cloth 0.08 100 6.25 350×220
    8 mm spreading carbon cloth 0.16 200 12.50 350×220
    Short cut fiber felt 0.40 50 350×220
    下载: 导出CSV

    表  2   针刺预制体参数

    Table  2   Parameters of needle punched preforms

    Preform Density/(g·cm−3) Number of layers Thickness/mm Volume fraction/vol%
    16 mm 8 mm Carbon fiber felt
    H-NPs 0.35 10 9 6.04 22.41
    B-NPs 0.29 10 9 5.79 18.73
    T-NPs 0.33 6 4 9 6.13 20.78
    下载: 导出CSV

    表  3   针刺C/C复合材料密度基孔隙率

    Table  3   Density based porosity of needle punched C/C composite materials

    Composite CVI/(g·cm−3) LPI/(g·cm−3) Porosity/%
    B-NPs 0.78 1.42 10.67
    H-NPs 0.74 1.31 13.32
    T-NPs 0.76 1.37 11.80
    Note: LPI—Liquid-phase impregnation/carbonization.
    下载: 导出CSV
  • [1]

    ZHOU Q H, WU G Z, WANG Z X, et al. Analysis and prediction of the width of spreading carbon fiber tow based on gray system theory[J]. Journal of Applied Polymer Science, 2021, 138(12): 50069. DOI: 10.1002/app.50069

    [2] 郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(5): 1604-1610.

    GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1604-1610(in Chinese).

    [3] 邵春艳, 殷小玮, 张立同, 等. 孔隙率对三维针刺C/C复合材料电磁屏蔽性能的影响[J]. 复合材料学报, 2012, 29(3): 59-64.

    SHAO Chunyan, YIN Xiaowei, ZHANG Litong, et al. Influence of porosity on the electromagnetic shielding properties of 3D C/C composites[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 59-64(in Chinese).

    [4] 刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(2): 1142-1153.

    LIU Wentai, CHENG Kun, ZHOU Helezi, et al. Prediction of in-plane tensile strength of needle punched C/C composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1142-1153(in Chinese).

    [5] 翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033.

    ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033(in Chinese).

    [6] 高军鹏, 白江波, 邓华, 等. 间隙率对平纹及三轴向织物复合材料弹性性能的影响[J]. 宇航材料工艺, 2014, 44(5): 20-24, 35.

    GAO Junpeng, BAI Jiangbo, DENG Hua, et al. Effect of gap ratio on elastic properties of plain weave fabric and laminate with triaxial weave fabric composites[J]. Aerospace Materials & Technology, 2014, 44(5): 20-24, 35(in Chinese).

    [7]

    DELHAÈS P, TRINQUECOSTE M, LINES J F, et al. Chemical vapor infiltration of C/C composites: Fast densification processes and matrix characterizations[J]. Carbon, 2005, 43(4): 681-691. DOI: 10.1016/j.carbon.2004.10.030

    [8] 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38(2): 86-95.

    SUN Le, WANG Cheng, LI Xiaofei, et al. Research progress on prefabricated C/C composite materials[J]. Journal of Aeronautical Materials, 2018, 38(2): 86-95(in Chinese).

    [9] 缑建杰, 张程煜, 吴小军, 等. 整体毡碳/碳复合材料的高温剪切性能研究[J]. 材料导报, 2013, 27(14): 74-77.

    HOU Jianjie, ZHANG Chengyu, WU Xiaojun, et al. Shear properties of integral felt C/C composites at elevated temperatures[J]. Materials Reports, 2013, 27(14): 74-77(in Chinese).

    [10]

    ZHANG X, LI X K, YUAN G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon, 2017, 114: 59-69. DOI: 10.1016/j.carbon.2016.11.080

    [11] 王梦千, 贾林涛, 刘瑶瑶, 等. ICVI工艺参数对碳/碳复合材料快速均匀致密化的影响[J]. 材料科学与工艺, 2021, 29(4): 25-32.

    WANG Mengqian, JIA Lintao, LIU Yaoyao, et al. Effect of ICVI process parameters on the rapid and uniform densification of carbon/carbon composite[J]. Materials Science and Technology, 2021, 29(4): 25-32(in Chinese).

    [12]

    LI K Z, DENG H L, CUI H J, et al. Floating catalyst chemical vapor infiltration of nanofilamentous carbon reinforced carbon/carbon composites densification behavior and matrix microstructure[J]. Carbon, 2014, 75: 353-365. DOI: 10.1016/j.carbon.2014.04.014

    [13]

    YU M M, LI H D, XUE K, et al. Effect of microstructure evaluation during the PIP process on macroscopic properties of C/C composites[J]. Composite Structures, 2023, 308: 116651. DOI: 10.1016/j.compstruct.2022.116651

    [14] 李艳, 崔红, 王斌, 等. 致密化工艺对厚壁针刺C/C复合材料性能的影响[J]. 复合材料学报, 2017, 34(10): 2337-2343.

    LI Yan, CUI Hong, WANG Bin, et al. Effect of densify- cation methods on properties of thick-wall needled C/C composites[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2337-2343(in Chinese).

    [15]

    WANG T, LI H, SHEN Q, et al. Dependence of mechanical properties on microstructure of high-textured pyrocarbon prepared via isothermal and thermal gradient chemical vapor infiltration[J]. Composites Part B: Engineering, 2020, 192: 107982. DOI: 10.1016/j.compositesb.2020.107982

    [16]

    LU X F, ZHANG J, QIAN K. Densification rate and mechanical properties of carbon/carbon composites with layer-designed preform[J]. Ceramics International, 2019, 45(4): 4167-4175. DOI: 10.1016/j.ceramint.2018.11.085

    [17] 樊凯, 卢雪峰, 张典堂, 等. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.

    FAN Kai, LU Xuefeng, ZHANG Diantang, et al. Effect of needle density on mechanical properties of three-dimensional carbon felt reinforced resin-based carbon composites[J]. Materials Reports, 2019, 33(14): 2450-2455(in Chinese).

    [18] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4): 1210-1222.

    LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1210-1222(in Chinese).

    [19] 李世超. 超薄碳纤维复合材料的制备及屏蔽性研究[D]. 郑州: 河南工业大学, 2020.

    LI Shichao. Study on preparation and shielding of ultra-thin carbon fiber composite materials[D]. Zhengzhou: Henan University of Technology, 2020(in Chinese).

    [20] 杨素心. C/C复合材料在光伏行业的应用[J]. 中国有色金属, 2018(7): 62-63.

    YANG Suxin. The application of C/C composites in the photovoltaic industry[J]. China Nonferrous Metals, 2018(7): 62-63(in Chinese).

    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for bending strength of fine ceramics: GB/T 6569—2006[S]. Beijing: China Standards Press, 2006(in Chinese).

    [22] 余鹏, 崔振铎, 朱胜利, 等. 浸渍−碳化工艺对碳/碳复合材料力学性能的影响[J]. 材料热处理学报, 2011, 32(S1): 33-36.

    YU Peng, CUI Zhenduo, ZHU Shengli, et al. Effect of impregnation/carbonization on mechanical properties of C/C composites[J]. Transactions of Materials and Heat Treatment, 2011, 32(S1): 33-36(in Chinese).

    [23]

    XU H, LI L, LI G, et al. In situ characterization of the flexural behavior and failure mechanism of 2D needle-punched carbon/carbon composites by digital image correlation[J]. Journal of Materials Science, 2022, 57(24): 11077-11091. DOI: 10.1007/s10853-022-07272-y

    [24] 黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397.

    HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC compositebased on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397(in Chinese).

    [25] 卢雪峰, 张洁, 钱坤, 等. 密度梯度变化预制体对C/C复合材料结构和力学性能的影响[J]. 化工新型材料, 2015, 43(8): 160-162.

    LU Xuefeng, ZHANG Jie, QIAN Kun, et al. Effect of carbon fiber preform with variable density on the structure and mechanical property of C/C composites[J]. New Chemical Materials, 2015, 43(8): 160-162(in Chinese).

  • 期刊类型引用(1)

    1. 刘晓军,战丽,邹爱玲,李志坤,赵俨梅,王绍宗. 纤维增强复合材料层间增韧技术研究进展. 复合材料科学与工程. 2022(01): 117-128 . 百度学术

    其他类型引用(1)

  • 目的 

    针刺碳/碳(C/C)复合材料具有低密度、高强度、高比模量和耐高温等特征,被广泛的应用于航空航天等重大装备部件。通常,针刺C/C复合材料预制体包括无纬布/网胎预制体、碳布/网胎叠层针刺的Novoltex和Naxeco预制体以及纯网胎的针刺整体毡等类型。但是传统无纬布和碳布中碳纤维在厚度方向上单丝数量多、排列紧凑,沉积过程中热解碳易堵塞形成闭孔,进而影响到针刺C/C复合材料服役环境下的力学性能。因此,如何降低C/C复合材料内部孔隙率,提高致密化效率是当下研究的热点问题。

    方法 

    选用8mm展宽布与16mm展宽布制备针刺预制体,采用化学气相沉积与浸渍碳化工艺对针刺预制体进行增密。其中利用阿基米德排水法表征增密过程中的密度变化,采用三点弯曲试验测试力学性能,使用电镜观察三点弯曲试验后的损伤形貌以揭示展宽布/网胎针刺C/C复合材料的损伤机制。

    结果 

    三种预制体具有相似地增重趋势。在沉积的开始阶段,预制体内部孔隙大,预制体的密度由热解碳的渗透率所主导,三种预制体的致密化速率快。随着沉积时间增加,8mm展宽布与网胎针刺而成的预制体(H-NPs)和外层采用16mm展宽布与网胎叠层、内层采用8mm展宽布与网胎叠层的针刺预制体(T-NPs)增重速率开始缓慢下降。当沉积时间达到60 h时,16mm展宽布与网胎针刺预制体(B-NPs)的密度超过其他两种材料。随后,三种材料增密速率逐渐变慢,其中,H-NPs的增密速率下降最快,而B-NPs下降缓慢,直至预制体表面发生堵塞,停止增密。最终B-NPs密度最大达到1.43g/m。三点弯曲试验结果表明,B-NPs、H-NPs和T-NPs的弯曲强度分别为144.37 MPa、134.43 MPa和173.04 MPa;弯曲模量分别为19.20 GPa、20.66 GPa和25.03 GPa。相较于B-NPs和H-NPs,T-NPs的弯曲模量与弯曲强度最大,T-NPs的弯曲强度分别提高了19.8%和29.1%;弯曲模量分别提高了30.7%和21.2%。损伤形貌表明, B-NPs中纤维在针刺纤维束和碳布层破坏主要以纤维断裂为主。而T-NPs内层结构在增密过程中出现闭孔,导致纤维/基体界面结合较差,其破坏主要以界面脱黏为主;外层碳布破坏以界面开裂为主导。对于高孔隙率的H-NPs,热解碳沉积时过早形成闭孔,后期树脂碳固化量较少,纤维/基体界面结合更差,其碳布层破坏以纤维拔出和纤维/基体界面脱黏为主导。其中,含孔隙较多的网胎层碳基体连续性不好,基体承载性能差,产生大面积破坏。H-NPs比B-NPs内部孔隙缺陷多,受到载荷时材料更易发生破坏,故B-NPs材料具有更优的力学性能。B-NPs相比于材料内部的低孔隙率,纤维因分散载荷能力差而导致失效占主导地位;而T-NPs孔隙率比B-NPs高出11.23%,差距较小。由于内层采用了连续性更好的8 mm展宽布作为“骨架”结构,分散载荷的能力要比B-NPs好,故T-NPs的力学性能较好。

    结论 

    展宽纱线宽度是影响展宽布/网胎针刺C/C复合材料致密化效率的原因之一,展宽纱线宽度越宽,预制体增密效果愈好。本文所涉及到的三种试验件中,由16 mm展宽布与网胎交替叠层的针刺预制体(B-NPs)预制体在化学气相渗透工艺中致密化效率最高,增密效果最佳;在浸渍-碳化工艺中,具有大孔隙结构、内部堵塞少的B-NPs预制体增密幅度最大,经五次浸渍-碳化之后,密度最高,达到1.42g/cm。三种针刺C/C复合材料三点弯曲失效为压缩应力和拉伸应力耦合作用下的结果,整个破坏是一个从压缩面外侧到拉伸面内侧的渐进过程。初始破坏均发生在针刺纤维束附近,且均表现出脆性破坏模式。弯曲载荷下,B-NPs纤维/基体界面结合能力强,碳布层和针刺纤维束破坏表现为纤维断裂。随着增密过程中闭孔现象的过早出现,碳布层纤维/基体界面结合能力逐渐变差,H-NPs破坏主要以纤维/基体界面脱黏和纤维拔出主导。

  • 针刺碳/碳(C/C)复合材料具有低密度、高强度、良好的耐磨性以及优异耐高温性能而被广泛的应用于航空航天、生物医疗和轨道交通等领域。通常,针刺C/C复合材料预制体包括无纬布/网胎预制体、碳布/网胎叠层针刺的Novoltex和Naxeco预制体以及纯网胎的针刺整体毡等类型。但是传统无纬布和碳布中碳纤维在厚度方向上单丝数量多、排列紧凑,沉积过程中热解碳易堵塞形成闭孔,导致材料内部出现孔隙缺陷,进而影响到针刺C/C复合材料服役环境下的力学性能。因此,如何降低C/C复合材料内部孔隙率,提高致密化效率是当下研究的热点问题

    基于上述,为了降低成本和解决致密化不充分的问题,本文设计并制备了三种结构展宽布/网胎针刺C/C复合材料,在常温下开展了针刺C/C复合材料三点弯曲力学性能测试,结合光学显微镜和扫描电镜对试样断口形貌进行了观测,阐明了展宽布/网胎针刺C/C复合材料力学行为和损伤机制,以丰富针刺C/C复合材料数据库,为针刺C/C复合材料力学性能研究提供理论依据和重要数据支撑。

    两种工艺致密化效率:(a)CVI工艺致密化密度变化;(b)LPI工艺致密化密度变化

    展宽布/网胎针刺C/C复合材料三点弯曲力学性能:(a)载荷-位移曲线;(b)弯曲强度和模量

图(15)  /  表(3)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  512
  • PDF下载量:  76
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-09-02
  • 录用日期:  2023-09-16
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回