高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用

Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation

  • 摘要: 气凝胶具有高孔隙率和高吸附性的特点,因此在含油废水处理领域是一种具有前景的候选材料。目前,所报道的气凝胶仍存在机械强度不足、制作工艺复杂、制备成本高等问题,限制了气凝胶在油水分离领域的应用。膨润土(Bentonite,BT)具有价格低、来源丰富、机械性能优良等特点,能够有效地改善气凝胶的机械性能。本文通过简单的冷冻干燥-常温浸渍法,在羧基纤维素纳米纤维(Carboxycellulose nanofibres,CNF-C)与壳聚糖(Chitosan,CS)的交联网络上引入剥离膨润土(Exfoliated bentonite,BTex),合成了疏水的纳米纤维素-壳聚糖/剥离膨润土气凝胶(CNC/BTex)。制备出的CNC/BTex气凝胶表现出优异的疏水性能(水接触角高达133°);经过挤压后在5 s内可恢复形变,具有良好的力学性能;对不同油品(正己烷、环己烷、二氯甲烷、食用油和发动机油)的吸附容量为18.48~40.20 g·g−1不等。以二氯甲烷和环己烷为主要研究对象,经过5次循环使用后依然保持稳定的吸油性能(维持在原始吸附量的90%)。本文的工作为制备低成本、高性能的油水分离吸附材料提供了参考。

     

    Abstract: Due to the high porosity and high absorption characteristics, aerogel has been a promising candidate material in the field of oily wastewater treatment. However, the reported aerogels were still suffering from insufficient mechanical strength, complicated fabrication process and high preparation cost, which limited the application of aerogels in the field of oil-water separation. Bentonite (BT) has the characteristics of low price, abundant source and excellent mechanical properties, which can effectively improve the mechanical properties of aerogels. In this paper, hydrophobic nanocellulose-chitosan/exfoliated bentonite aerogels (CNC/BTex) were synthesized by introducing exfoliated bentonite (BTex) onto a cross-linked network of carboxycellulose nanofibres (CNF-C) and chitosan (CS) by a simple freeze-drying and ambient temperature impregnation method. The prepared CNC/BTex aerogel exhibited excellent hydrophobic properties (water contact angle 133°), recovered deformation within 5 s after extrusion and showed good mechanical properties. The adsorption capacities for different oils (hexane, cyclohexane, dichloromethane, cooking oil and engine oil) ranged from 18.48-40.20 g·g−1. Using dichloromethane and cyclohexane as the main research objects, the oil adsorption performance remained stable (90% of the original adsorption capacity) after five cycles of use. In summary, the present work provides a reference for the preparation of low-cost and high-performance adsorbent materials for oil-water separation.

     

/

返回文章
返回