Mechanical and electrical response of silicon rubber intelligent composite materials reinforced by dual carbon structure
-
摘要: 可拉伸应变传感器在减隔震领域具有广阔的应用前景,然而,研发低成本和高稳定性可拉伸应变传感器仍然是一个巨大挑战。本文采用开炼法制备出多壁碳纳米管(MWCNT)-导电炭黑(CB)/甲基乙烯基硅橡胶(VMQ)导电纳米复合材料。研究MWCNT与CB之间的协同效应对复合材料分散性能、导电性能、力学性能及电阻-应变响应性能影响。结果表明:添加CB后复合材料力学性能提升,具有较低的渗流阈值(1.24wt%),5000次循环加载-卸载过程中表现出优异的电阻-应变响应稳定性。此外,MWCNT-CB/VMQ复合材料相比于MWCNT/VMQ、CB/VMQ复合材料在电阻-应变响应性能中没有出现肩峰现象,同时解释了肩峰现象机制。通过SEM发现复合材料中MWCNT和CB均匀分布及形成的协同效应是低阈值和稳定电阻-应变响应性能的重要原因。通过隧道效应理论模型解释了电阻-应变响应机制。该复合材料对减隔震结构应变监测具有巨大潜力。Abstract: Stretchable strain sensors have broad application prospects in the field of vibration reduction and isolation, however, developing low-cost and high stability stretchable strain sensors remains a huge challenge. This article used the open melt method to prepare multi-walled carbon nanotubes (MWCNT)-conductive carbon black (CB)/methyl vinyl silicone rubber (VMQ) conductive nanocomposites. The effects of the synergistic effect between MWCNT and CB on the dispersion, conductivity, mechanical properties and resistance-strain response of the composites were investigated.The results show that the mechanical properties of the composite material are improved after adding CB, with a lower percolation threshold (1.24wt%), and excellent resistance strain response stability is demonstrated during 5000 cycles of loading-unloading. In addition, compared to MWCNT/VMQ and CB/VMQ composites, the MWCNT-CB/VMQ composite did not exhibit shoulder peak phenomenon in the resistance-strain response performance, and explained the mechanism of shoulder peak phenomenon. Through SEM, it is found that the uniform distribution and synergistic effect of MWCNT and CB in the composite material are important reasons for the low threshold and stable resistance-strain response performance. The mechanism of resistance-strain response was explained through the tunnel effect theory model. This composite material has great potential for strain monitoring of seismic isolation structures.
-
目前我国土木工程领域已经进入新建和加固并重的新时期。碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)具有耐腐蚀、轻质高强及耐久性好等优点,且外贴CFRP片材加固有可操作性高、经济效益高等优点。因此外贴CFRP片材来加固既有混凝土结构引起了广泛关注。但采用CFRP片材加固后的混凝土结构易遭受二次腐蚀,混凝土表面裂缝的出现导致应力集中,易发生CFRP片材与混凝土界面的过早剥离破坏,会大大降低CFRP片材的利用率和结构的安全性能[1]。外贴CFRP片材和既有混凝土结构之间能否保证有效粘结从而有效传递应力是决定加固效果的关键[2-3]。
工程水泥基复合材料(Engineered cementitious composites,ECC)因其多裂缝开裂、耐久性好等特性在加固既有混凝土结构领域引起了学者广泛关注。结构用ECC加固后耐久性能提升明显,但其极限承载力提高有限[4-5]。在CFRP片材和混凝土之间设置ECC层,ECC良好的耐久性可减少外界环境对混凝土结构的侵蚀,细密裂缝的特性则可以延缓CFRP片材的剥离,有效地传递界面剪应力,从而更好地发挥CFRP片材高抗拉强度的优点。葛文杰等[6]和Wu等[7]的研究表明:混凝土结构用CFRP布和ECC复合加固后其综合性能得到明显改善,大大提高了加固效益。
学者们用纤维增强树脂复合材料(FRP)对受弯梁进行抗弯加固进行了大量研究[8-12],结果表明:若用FRP材料对混凝土结构进行加固,其综合性能会得到明显改善。而对于ECC作为过渡层来研究FRP加固的界面粘结性能方面的研究较少,试验数据有限导致影响变量尚不明确。因此ECC与CFRP片材的结合使用时两者界面粘结性能需进一步研究。Sui等[13]研究了常规环境下FRP-ECC-混凝土单面剪切试件的性能,结果表明随着ECC的加入,极限滑移、耗能能力及FRP的有效利用率均显著提高。
本文通过单面剪切试验对CFRP片材-ECC-混凝土复合界面抗剪性能进行研究,设计变量为混凝土/ECC强度、和ECC厚度,研究其对复合界面承载力、应变分布规律、粘结滑移曲线规律等的影响。
1. 试验概况
1.1 材料性能
试验所用CFRP片材厚度为1.2 mm,其拉伸强度、弹性模量分别为2451 MPa和167 GPa,极限延伸率可达到1.41%。CFRP-A/B胶作为CFRP片材-ECC复合界面的结构胶结剂,按2∶1的质量进行配比使用。粘结胶的抗拉强度为38.2 MPa,弹性模量为2530 MPa,极限延伸率为1.72%,胶层刚度Ka
为5 MPa左右。 采用C30和C50两种强度的ECC,其配合比见表1。水泥为P42.5普通硅酸盐水泥,粉煤灰采用I级粉煤灰,石英砂采用74~106 μm石英砂,所用减水剂的减水率在25%以上。聚乙烯醇(PVA)纤维材料性能指标见表2。
表 1 工程水泥基复合材料(ECC)配合比Table 1. Proportion of engineered cementitious composites (ECC)ECC Cement Fly ash Silica fume Quartz sand Water PVA Water reducer Thickener C30 1 3.0 0.3 0.4 1.37 2.00% 0.2% 0.08% C50 1 2.0 0.3 0.4 0.92 2.00% 0.2% 0.05% Notes: Fly ash, silica fume, quartz sand, water—Relative mass ratios to cement; PVA, water reducer, thickener—Relative volume ratios to ECC; PVA—Polyvinyl alcohol. 表 2 聚乙烯醇(PVA)纤维的材料性能Table 2. Material properties of polyvinyl alcohol (PVA) fibersDiameter/μm Length/mm Tensile strength/MPa Young’s modulus/GPa Density/(g·cm−3) 40 12 1560 41 1.3 ECC基本拉伸力学性通过狗骨状试件拉伸试验进行,加载装置如图1(a)所示,加载速率设定为0.5 mm/min。ECC拉伸应力-应变曲线见图1(b),其主要分为3个阶段:(1) 弹性阶段:应力应变线性增长且没有裂缝产生;(2) 屈服阶段:试件出现多条细密裂纹,曲线斜率下降,没有出现应力集中的现象,为ECC的应变硬化阶段;(3) 下降阶段:试件上某条裂缝宽度增大,出现应力集中,直至最终破坏。C30和C50强度ECC极限抗拉强度分别为5.5 MPa和6.3 MPa。
采用C30和C50两种强度的混凝土且配合比见表3。水泥为P42.5普通硅酸盐水泥,细骨料为细度模数为2.3~3.0的Ⅱ区河砂,粗骨料为粒径为5~20 mm的碎石。C30和C50强度混凝土28天平均立方体抗压强度分别为38.3 MPa和59.1 MPa。
表 3 混凝土配合比Table 3. Proportion of concretekg/m3 Concrete Water Cement Fly ash Sand Gravel C30 165 281 70 678 1206 C50 165 376 95 565 1199 1.2 试件设计
试件尺寸为300 mm×150 mm×150 mm。ECC尺寸为260 mm×120 mm,设置10 mm、20 mm、30 mm三种厚度。CFRP片材厚度为1.2 mm,宽度为50 mm,在ECC上的粘贴长度为200 mm。在加载端有30 mm的非粘结区以避免加载过程中出现应力集中现象。试件示意图如图2(a)所示。将混凝土/ECC强度(混凝土和ECC强度一致)、ECC厚度作为试验变量,单面剪切试件共7组21个试件。其中1组为不设置ECC层的对照组,其混凝土强度为C30。每组包含3个试件以提高结果可靠性。具体试件设计见表4。C30和C50为混凝土/ECC强度等级,E10/E20/E30为ECC层厚度,试件序号为最后一个数字。为防止混凝土和ECC界面发生剥离破坏,提高CFRP片材利用率,使用高压水射法对混凝土表面进行处理从而提高其粗糙度,处理后的界面如图3所示。
表 4 CFRP片材-ECC-混凝土试件设计Table 4. Design of CFRP plate-ECC-concrete specimensSpecimen Concrete/ECC strength/MPa ECC thickness/mm C30-E10 30 10 C30-E20 30 20 C30-E30 30 30 C50-E10 50 10 C50-E20 50 20 C50-E30 50 30 C30 30 – 1.3 加载装置
试件尺寸及加载示意图如图2所示。该试验用1对量程为10 T的液压千斤顶手动施加荷载。加载时调整加载端垫板的高度使千斤顶、力传感器及CFRP片材三者的中心在同一水平面上。然后用螺栓把加载端CFRP片材固定防止在加载过程中脱落。在CFRP片材表面每隔30 mm粘贴1个120-5AA应变片以测量加载过程中CFRP片材的应变变化和分布。
2. CFRP片材-ECC-混凝土试验破坏现象
设置ECC层的试件破坏模式均为CFRP片材-ECC复合界面的剥离破坏,如图4所示,这是希望出现的破坏模式,表明高压水枪喷射法处理混凝土表面可保证混凝土和ECC界面的有效粘结。初加荷载时,界面粘结应力主要集中在加载端,CFRP片材通过胶层与ECC粘结在一起,试件处于线弹性阶段,各部分变形协调。随着荷载的增加,参与受力的CFRP片材的长度增加,试件开始发出断断续续“噔”的声音,此时CFRP片材-ECC复合界面粘结应力开始从加载端逐渐向自由端传递。荷载达加到极限承载力的80%左右时,加载端ECC达到其抗拉强度,CFRP片材-ECC复合界面在加载端开始出现明显剥离,胶层与ECC的接触面开始出现裂缝,试件持续发出“噔”的声音。当参与受力的CFRP片材长度达到有效锚固长度后,荷载基本不再增加,但CFRP片材应变持续增大,最大剪应力处向自由端发展。复合界面剥离达到极限状态时,伴着较大的一声“砰”的声响,CFRP片材从ECC表面剥离,试件最终破坏。
不设置ECC层的试件破坏模式均为CFRP片材与混凝土界面的剥离。加载初期,混凝土和CFRP片材界面间无明显滑移。随着荷载的增加,可以听见轻微剥离声。荷载达到极限承载力的80%左右时,相对滑移明显增加,试件持续发出剥离的声音。伴随一声“砰”的声响,CFRP片材完全剥离,试件发生脆性破坏。
试件破坏后,有不同厚度的ECC被CFRP片材粘下,如图5所示。当ECC厚度为10 mm时,剥离表面可以清晰的看到PVA纤维,被粘下的ECC较薄。ECC厚度增加到20 mm时,约3~4 mm的ECC附着在CFRP片材上。当ECC厚度为30 mm时,约5 mm厚ECC被剥离,且ECC表面被拔出纤维更加明显。
3. 试验结果分析
3.1 CFRP片材-ECC-混凝土极限承载力
单面剪切试件极限承载力分布汇总见图6和表5,复合界面极限承载力随着ECC厚度及混凝土/ECC强度的增加而增加,但厚度越大增长的速率反而呈下降的趋势。设置3种不同ECC层厚度的单面剪切试件相比于无ECC层试件C30的极限承载力增加了27.3%~59.6%。对于混凝土/ECC强度为C30的试件,随着ECC厚度的增加最大承载力与未设置ECC层试件相比分别提高27.3%、49.5%和59.6%。当混凝土/ECC强度为C50,ECC厚度为20 mm、30 mm时,相比于ECC厚度为10 mm的试件极限承载力分别增加25%、27.4%。厚度为30 mm时相比20 mm厚度的ECC强度增加有限,表明单面剪切试件受力时,CFRP片材-ECC复合界面粘结应力无法传递到20 mm厚度以上的ECC或传递的力较小,因此不能仅靠提高ECC厚度来在增强极限承载力,否则无法发挥材料的最佳性能。对于ECC层厚度为10 mm、20 mm和30 mm的单面剪切试件,混凝土/ECC强度为C50时试件其极限承载力比强度为C30的试件分别提高了30.2%、38.5%和32.3%。由此可知:ECC厚度为30 mm时,随着混凝土强度提高极限承载力提高率不增反降,表明在ECC厚度较大时提高混凝土强度不是提高极限承载力有效方法。
表 5 CFRP片材-ECC-混凝土试验结果汇总Table 5. Summary of test results of CFRP plate-ECC-concrete specimensSpecimen Ultimate load/kN Average/kN Theoretical/kN E/T YANG yongxin et al[14] Neubauer et al[15] LU xinzheng et al[16] C30-1 9.2 C30-2 9.6 9.9 – – 12.5 20.8 15.4 C30-3 10.8 C30-E10-1 12.3 0.88 C30-E10-2 12.4 12.6 13.9 0.89 27.9 42.3 28.2 C30-E10-3 13.0 0.94 C30-E20-1 14.8 0.89 C30-E20-2 14.6 14.8 16.6 0.88 27.9 42.3 28.2 C30-E20-3 14.9 0.90 C30-E30-1 15.3 0.86 C30-E30-2 15.8 15.8 18.3 0.84 27.9 42.3 28.2 C30-E30-3 16.2 0.89 C50-E10-1 15.9 1.14 C50-E10-2 16.8 16.4 13.9 1.20 30.3 45.2 29.2 C50-E10-3 16.4 1.17 C50-E20-1 20.4 1.22 C50-E20-2 21.5 20.5 16.6 1.19 30.3 45.2 29.2 C50-E20-3 19.6 1.18 C50-E30-1 22.3 1.21 C50-E30-2 20.5 20.9 18.3 1.12 30.3 45.2 29.2 C50-E30-3 20.0 1.09 Notes: E—Experimental value; T—Theoretical value. 3.2 CFRP片材应变分布
典型试件的CFRP片材沿长度方向应变分布见图7。在加载初期,CFRP片材应变近似呈线性分布,且此时应变均较小。应变随着荷载的增加而增加,且近似呈二次分布,相邻区域应变差值逐渐增大,CFRP片材-ECC复合界面剪应力也逐渐增大,且粘结应力从加载端逐渐向自由端传递。随着荷载的增加,加载端ECC逐渐达到其极限抗拉强度,CFRP片材-ECC界面在加载端开始出现明显剥离,胶层与ECC的接触面开始出现裂缝,此时在加载端处ECC传递至CFRP片材上的应力有限,相对应的CFRP片材的应变也相对较小。传递应力最大处转移至未开裂的远离加载端的CFRP-ECC界面,因此应变峰值点也转移至未出现剥离的远离加载端的部位。CFRP片材应变表现为先增大后减小的趋势。这与试件破坏规律相对应,此时CFRP片材应变为典型的“S”形应变分布直到失效。对于具有ECC层的试件,试件破坏时距加载端160 mm以上时也存在应变,覆盖整个粘合区域,对于无ECC层试件则始终为零,这证实了ECC的裂缝控制能力可以有效地传递界面剪切应力,延缓CFRP板的剥离。试件C50-E30-3极限承载力达到20.0 kN,CFRP片材极限微应变可达到17.23×10−4,表明混凝土/ECC强度以及ECC厚度的增加有利于发挥CFRP片材性能。而对比组试件C30-3材料未充分利用,试件极限承载力和CFRP片材极限微应变均最小分别为10.8 kN和10.24×10−4。
4. CFRP片材-ECC-混凝土复合界面承载力计算模型
试件极限承载力与ECC厚度关系拟合曲线如图8所示,混凝土/ECC强度对极限承载力影响较大,因此区分不同的强度分别进行拟合。当混凝土/ECC强度为C30和C50时,曲线拟合相关系数R2分别达到0.925和0.763,表明ECC厚度与试件极限承载力间有良好的线性相关性。
国内外学者经过大量试验及理论分析,提出多个极限承载力计算模型。可以得出:模型考虑因素越多,计算结果越为精准。经典承载力模型如下:
杨勇新等[14]的模型,考虑了混凝土强度、有效锚固长度及FRP片材刚度的影响:
τu=0.5ft (1a) Le=100mm (1b) Pu=(0.5+0.08√Eftf100ft)bfLeτu (1c) Neubauer等[15]的模型,考虑了混凝土强度、有效锚固长度、FRP片材刚度及宽度比的影响:
βw=√1.1252−bf/bc1+bf/400 (2a) Le=√Eftf2ft (2b) {Pu=0.64βwbf√EftfftL⩾ (2c) Lu等[16]综合诸多模型后对承载力计算模型提出简化:
{P_{\rm{u}}} = {\beta _{\rm{l}}}{b_{\rm{f}}}\sqrt {2{E_{\rm{f}}}{t_{\rm{f}}}{G_{\rm{f}}}} (3a) {G_{\rm{f}}} = 0.308\sqrt {{f_{\rm{t}}}} \beta _{_{\rm{w}}}^2 (3b) {\beta _{\rm{w}}} = \sqrt {\frac{{2.25 - {b_{\rm{f}}}/{b_{\rm{c}}}}}{{1.25 + {b_{\rm{f}}}/{b_{\rm{c}}}}}} (3c) {\beta _{\rm{l}}} = \left\{ {\begin{array}{*{20}{l}} {\dfrac{L}{{{L_{\rm{e}}}}}(2 - \dfrac{L}{{{L_{\rm{e}}}}})\;L < {L_{\rm{e}}}{\rm{ }}}\\ {1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;L \geqslant {L_{\rm{e}}}{\rm{ }}} \end{array}} \right.{L_{\rm{e}}} = 1.33\dfrac{{\sqrt {{E_{\rm{f}}}{t_{\rm{f}}}} }}{{{f_{\rm{t}}}}} (3d) 式中:τu为平均粘结应力;Pu为剥离承载力;Gf为界面破坏能;ft为混凝土抗拉强度;βw和βl分别为尺寸影响系数;Ef、tf和bf分别为CFRP片材的弹性模量、厚度和宽度;L和Le分别为粘结长度和有效粘结长度;bc为混凝土块体的宽度;Gf为破坏能。
以上3种模型计算所得结果见表5。模型计算值均与试验值有所偏差,主要原因可能是以往研究的是FRP与混凝土界面的剥离承载力,而混凝土的厚度远高于比本文所用ECC厚度且没有考虑在计算模型中[17]。而本文所用ECC厚度较小,复合界面剪应力可能传递到普通混凝土,因此在对本文单面剪切试件进行复合界面承载力计算时,不可忽略ECC厚度的影响。本文在Lu等[16]的模型基础上考虑ECC厚度对界面承载力的影响,对公式进一步改进:
{P_{\rm{u}}} = \frac{{{\beta _{\rm{l}}}{b_{\rm{f}}}\sqrt {2{E_{\rm{f}}}{t_{\rm{f}}}{G_{\rm{f}}}\sqrt {{t_{\rm{E}}}} } }}{{3.6}} (4) 式中,tE为ECC厚度。按照此极限承载力计算模型计算结果见表5。计算结果表明:本文考虑ECC厚度影响的承载力计算模型理论值与试验值吻合较好,优于Lu等[16]提出的模型。
5. CFRP片材-ECC-混凝土粘结-滑移模型
粘结-滑移关系反映了界面局部剪应力和相对滑移的发展规律,对采用理论和数值方法分析CFRP片材加固混凝土结构的性能非常重要。粘结-滑移关系决定了界面的受力过程、CFRP片材应变分布等指标。因此,为了更好地研究CFRP片材-混凝土界面性能,需更深入分析复合界面的粘结-滑移关系,其应力和变形分布如图9所示。
图 9 CFRP片材-ECC-混凝土复合界面应力分布示意图Figure 9. Schematic diagram of interface stress distribution between CFRP plate-ECC-concrete compositeP—External force applied; εf—Strain of CFRP plate; σf(x), σc(x)—Stresses of CFRP plate and ECC, respectively; xi—Bonding position for strain gauges of CFRP plate; τ(x)—Interfacial shear stress由图9中受力平衡可得:
\tau (x){\rm{d}}x = {t_{\rm{f}}}{\rm{d}}{\sigma _{\rm{f}}}(x) (5) 进一步可得相邻两应变测点间界面剪应力:
{\tau _{i + 1/2}} = {E_{\rm{f}}}{t_{\rm{f}}}\frac{{{\rm{d}}{\varepsilon _{\rm{f}}}}}{{{\rm{d}}x}} = {E_{\rm{f}}}{t_{\rm{f}}}\frac{{{\varepsilon _i} - {\varepsilon _{i + 1}}}}{{\Delta l}} (6) 局部滑移可按照下式计算:
{s_i} = {s_{i + 1}} + \frac{{{\varepsilon _{{\rm{f}},i}} - {\varepsilon _{{\rm{f}},i + 1}}}}{2}\Delta l + {\varepsilon _{{\rm{f}},i + 1}}\Delta l{\kern 1pt} (7) 式中:
{\tau _{i + 1/2}} 和\Delta l 分别为i和i+1点间的剪应力和中心间距;{\varepsilon _i} 为第i个应变测点的值,i=1、2、…、6。选取典型试件的粘结-滑移曲线如图10所示。由式(6)和式(7)计算得到的是相邻应变测点间的平均剪应力和相对滑移值。剪应力基本符合随滑移值的增大先增大后减小的规律。从施加荷载直到剪应力峰值前,曲线近似为直线,试件处于线弹性阶段;随着荷载的增加,参与受力的CFRP片材的长度增加,此时CFRP片材-ECC复合界面进一步出现损伤,表现为达到峰值剪应力后曲线开始下降。以试件C50-E30-1为例,剪应力下降到1 MPa左右时,滑移量迅速增加。此时CFRP片材-ECC复合界面正在发生较大的剥离。滑移值达到0.1 mm左右时,大部分剪应力值已为0,但由于ECC特殊的应变硬化作用,小部分CFRP片材-ECC复合界面在滑移较大时仍能传递一定的剪应力。当剪应力降低直至于0时,CFRP片材从ECC表面剥离。
图 11 CFRP片材-ECC-混凝土试件粘结-滑移数据拟合曲线Figure 11. Bond-slip data fitting curves of CFRP plate-ECC-concrete specimensτ—Corresponding shear stress when the slip is S(Sp); τmax, \bar \tau—Peak shear stress; S_0 , \bar S —Slip corresponding to τmax; Sp—Slip; Su, Sf—Maximum slip; fc, ft—Compressive strength, tensile strength of concrete; βw, Gf—Size influence coefficient and fracture energy; Ef, tf—Elastic modulus and thickness of CFRP plate; bf, bc—Width of CFRP plate and concrete; Ga, ta—Shear modulus and thickness of the adhesive; n—Coefficient采用几种典型的FRP-混凝土界面粘结-滑移本构关系,对试件C50-E30-1的粘结-滑移数据进行拟合分析以得到一般性规律,如图11所示。图中:
\tau 为滑移为s 时对应的粘结剪应力;{\tau _{\max }} 、\overline \tau 为峰值剪应力;n为系数;{S_0} 、\overline S 为{\tau _{\max }} 对应的滑移;{S_{\rm{u}}} 、{S_{\rm{f}}} 为最大滑移;fc为混凝土抗压强度;Ga/ta=Ka,Ga和ta分别为胶层剪切模量和厚度。Ferracuti等[18]的模型相比于其他3种模型,在下降段显示了更柔软的响应,考虑的影响因素较全面(混凝土强度、FRP片材刚度、有效锚固长度及宽度比等均考虑),模型的计算结果与试验数据拟合较好。Dai等[19]的模型是基于较小的胶层刚度(Ka<1 MPa)的试验结果,对于有普通胶层刚度(本文Ka为5 MPa左右)的粘结-滑移数据拟合结果滑移量明显偏大。Lu等[20]模型对Gf和τmax的预测值均偏小,低估了界面的抗剪承载力,与试验数据也有一定的偏差。陆新征[21]的模型在粘结-滑移曲线上升段拟合较好,但在下降段没有考虑材料应变硬化特性和界面软化的影响,下降段拟合结果不理想。用Ferracuti等[18]模型拟合典型试件的曲线见图12。设置ECC层的单面剪切试件在达到最大剪切应力时的滑移量均比无ECC层的对照试件大,且最大剪切应力均有增加。由于ECC多缝开裂及应变硬化特性,有ECC层的试件的初始刚度均比无ECC层的对比试件小。大部分试件拟合值与试验结果吻合较好,相关系数可达到0.8以上。
6. 结 论
(1) 采用碳纤维增强树脂复合材料(CFRP)片材-工程水泥基复合材料(ECC)复合界面可有效延缓CFRP片材的剥离,可以更有效地传递界面剪应力。研究表明,复合界面的抗剪性能明显优于纤维增强树脂复合材料(FRP)-混凝土界面的抗剪性能。
(2) 设置ECC层的单面剪切试件破坏模式均为CFRP片材-ECC复合界面的剥离破坏。ECC厚度增加为20 mm以上时,试件破坏后CFRP片材上附着的ECC厚度为3~5 mm,表明ECC厚度的增加有利于提高复合界面抗剪承载力。
(3) 设置ECC层的试件相比于无ECC层试件的极限承载力增加了27.3%~59.6%。ECC厚度由20 mm增加到30 mm时,强度提高率有限,表明不能仅靠提高ECC厚度来在增强极限承载力。
(4) 本文提出的考虑ECC厚度的极限承载力计算模型计算值与试验结果吻合较好。不同的粘结滑移本构关系中,考虑下降段曲线软化的模型与本文试验结果相吻合。
-
图 1 (a) 导电硅橡胶复合材料制备流程;(b) 复合材料在原始、拉伸、弯曲、扭转下的图像;(c) 测试装置
Figure 1. (a) Preparation process of conductive silicone rubber composite; (b) Photos of composite material under original, stretching, bending and torsion; (c) Test diagram
MWCNT—Multi-walled carbon nanotubes; CB—Carbon black; VMQ—Methyl vinyl silicone rubber; HPMS—Hydroxyl silicone oil; DBPMH—2, 5-dimethyl-2, 5-bis(tert-butyl peroxy)hexane; LMBG—Two-stage vulcanization
图 2 (a) 多壁碳纳米管(MWCNT)-导电炭黑(CB)/甲基乙烯基硅橡胶(VMQ)复合材料在不同MWCNT含量下的应力-应变曲线;((b)~(d)) MWCNT2wt%-CB/VMQ、MWCNT/VMQ、CB/VMQ复合材料的拉伸强度、断裂伸长率、杨氏模量;(e) 3种复合材料在应变为200%下的循环应力-应变曲线
Figure 2. (a) Stress-strain curves of multi-walled carbon nanotubes (MWCNT)-conductive carbon black (CB)/methyl vinyl silicone rubber (VMQ) composites with different MWCNT contents; ((b)-(d)) Tensile strength, elongation at break, and Young's modulus of MWCNT2wt%-CB/VMQ、MWCNT/VMQ and CB/VMQ composites; (e) Cycle stress-strain curves of three composites under 200% strain
S1, S2, S3—Area of hysteretic curves
图 3 (a) 3种复合材料的体积电导率σ;(b) 3种复合材料渗流阈值拟合曲线;(c) 3种复合材料在应变为150%下的电阻-应变响应曲线和变形灵敏度(GF)值;(d) MWCNT2wt%-CB/VMQ复合材料和其他先前报道的应变传感器在最大应变下的最高GF的比较
Figure 3. (a) Volume conductivity σ of three composites; (b) Fitting curves of seepage threshold of three composites; (c) Resistance-strain response curves and GF values of the three composites at 150% strain; (d) Comparison of the maximum GF at maximum strain of MWCNT2wt%-CB/VMQ composites with other previously reported strain sensors
w—Conductive filler content; φ—Percolation threshold; GF—Sensitivity; ΔR/R0—Resistance; ε—Strain
图 5 CB9wt%/VMQ (a)、MWCNT4wt%/VMQ (b)、MWCNT2wt%-CB/VMQ (c)复合材料在应变为30%下电阻-应变响应第7次循环加载-卸载
Figure 5. CB9wt%/VMQ (a), MWCNT4wt%/VMQ (b), MWCNT2wt%-CB/VMQ (c) composites respond to the 7th cyclic loading-unloading under the strain of 30%
IH1, IH2, IH3—Shoulder peak phenomenon area of CB9wt%/VMQ, MWCNT4wt%/VMQ, and MWCNT2wt%-CB/VMQ, respectively
图 6 (a) MWCNT2wt%-CB/VMQ复合材料在不同应变下的电阻响应;(b) MWCNT2wt%-CB/VMQ复合材料在应变为5%、速率1000 mm/min−1下的响应时间;(c) MWCNT2wt%-CB/VMQ复合材料在不同速率下的电阻响应;((d)~(g)) MWCNT2wt%-CB/VMQ复合材料在应变为10%、20%、30%、40%下500次电阻响应;(h) MWCNT2wt%-CB/VMQ复合材料在应变为50%下的5000次电阻响应
Figure 6. (a) Resistance responses of MWCNT2wt%-CB/VMQ composites under different strains; (b) Response time of MWCNT2wt%-CB/VMQ composites at a strain of 5% and a rate of 1000 mm/min−1; (c) Resistance responses of MWCNT2wt%-CB/VMQ composites at different rates; ((d)-(g)) MWCNT2wt%-CB/VMQ composites have 500 times resistance responses at strain of 10%, 20%, 30% and 40%; (h) 5000 times resistance responses of MWCNT2wt%-CB/VMQ composites at 50% strain
图 8 ((a)~(d)) MWCNT-CB/VMQ复合材料的导电网络在拉伸过程的演化机制;MWCNT2wt%-CB/VMQ (e)、CB9wt%/VMQ (f)、MWCNT4wt%/VMQ (g)复合材料在拉伸过程实验结果与理论结果的电阻
Figure 8. ((a)-(d)) Evolution mechanism of the conductive network of the MWCNT-CB/VMQ composites during the tensile process; Experimental and theoretical resistance of MWCNT2wt%-CB/VMQ (e), CB9wt%/VMQ (f), MWCNT4wt%/VMQ (g) composites
表 1 不同导电填料含量的ΔR/R0-应变曲线拟合后的参数
Table 1 Parameters of resistance ΔR/R0-strain curves fitting for different conductive filler contents
Filler content {m} {{ \varepsilon }}_{\text{c}} {{n}}_{\text{s}} MWCNT4wt%
MWCNT2wt%-CB
CB9wt%2.55
14.56
7.083.92
6.55
4.96−1.81
−3.62
−3.48Notes: m—Aconstant related to the fractal structure of the network; εc—Constant which can be interpreted as the yield strain; ns—Scaling exponent. -
[1] ARIA M, AKBARI R. Inspection, condition evaluation and replacement of elastomeric bearings in road bridges[J]. Structure and Infrastructure Engineering,2013,9(9):918-934. DOI: 10.1080/15732479.2011.638171
[2] SUN L, SHANG Z, XIA Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection[J]. Journal of Structural Engineering,2020,146(5):04020073. DOI: 10.1061/(ASCE)ST.1943-541X.0002535
[3] SIRINGORINGO D M, FUJINO Y, SUZUKI M. Long-term continuous seismic monitoring of multi-span highway bridge and evaluation of bearing condition by wireless sensor network[J]. Engineering Structures,2023,276:115372. DOI: 10.1016/j.engstruct.2022.115372
[4] MENG X, NGUYEN D T, XIE Y, et al. Design and implementation of a new system for large bridge monitoring—GeoSHM[J]. Sensors,2018,18(3):775. DOI: 10.3390/s18030775
[5] YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology,2018,167:371-378. DOI: 10.1016/j.compscitech.2018.08.022
[6] XU Y, XIE X, HUANG H, et al. Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor[J]. Journal of Materials Science,2020,56(3):2296-2310.
[7] LIU X, REN Z, LIU F, et al. Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions[J]. ACS Applied Materials & Interfaces,2021,13(12):14612-14622.
[8] LIU L, GAO Y, LIU Y, et al. Biomimetic metal-organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range[J]. Applied Surface Science,2022,593:153417. DOI: 10.1016/j.apsusc.2022.153417
[9] OH S, KIM J, CHANG S T. Highly sensitive metal-grid strain sensors via water-based solution processing[J]. RSC Advances,2018,8(73):42153-42159. DOI: 10.1039/C8RA08721K
[10] CHRIST J F, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design,2017,131:394-401.
[11] YAN J, MALAKOOTI M H, LU Z, et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization[J]. Nature Nanotechnology,2019,14(7):684-690. DOI: 10.1038/s41565-019-0454-6
[12] MIN S H, LEE G Y, AHN S H. Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites[J]. Composites Part B: Engineering,2019,161:395-401. DOI: 10.1016/j.compositesb.2018.12.107
[13] BORAYEK R, FOROUGHI F, XIN X, et al. Near-zero hysteresis ionic conductive elastomers with long-term stability for sensing applications[J]. ACS Applied Materials & Interfaces,2022,14(9):11727-11738. DOI: 10.1021/acsami.1c24784
[14] LIU X, GUO R, LIN Z, et al. Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structural deformation monitoring[J]. Nanomaterials and Nanotechnology,2021,11:1-13.
[15] KURIAN A S, MOHAN V B, BHATTACHARYYA D. Embedded large strain sensors with graphene-carbon black-silicone rubber composites[J]. Sensors and Actuators A: Physical,2018,282:206-214. DOI: 10.1016/j.sna.2018.09.017
[16] XU X, YUAN Y, ZHANG T, et al. A silanized MCNT/TPU-based flexible strain sensor with high stretchability for deformation monitoring of elastomeric isolators for bridges[J]. Construction and Building Materials,2022,338:127664. DOI: 10.1016/j.conbuildmat.2022.127664
[17] REN H, LI H, WANG H, et al. Biodegradation of tetrahydrofuran by the newly isolated filamentous fungus Pseudallescheria boydii ZM01[J]. Microorganisms,2020,8(8):1190. DOI: 10.3390/microorganisms8081190
[18] WAN B, YANG Y, GUO R, et al. Effect of vulcanization on the electro-mechanical sensing characteristics of multi-walled carbon nanotube/silicone rubber composites[J]. Polymers,2023,15(6):1412. DOI: 10.3390/polym15061412
[19] ZHU S, SUN H, LU Y, et al. Inherently conductive poly(dimethylsiloxane) elastomers synergistically mediated by nanocellulose/carbon nanotube nanohybrids toward highly sensitive, stretchable, and durable strain sensors[J]. ACS Applied Materials & Interfaces,2021,13(49):59142-59153. DOI: 10.1021/acsami.1c19482
[20] YANG H, GONG L H, ZHENG Z, et al. Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes[J]. Carbon,2020,158:893-903. DOI: 10.1016/j.carbon.2019.11.079
[21] GEORGOUSIS G, ROUMPOS K, KONTOU E, et al. Strain and damage monitoring in SBR nanocomposites under cyclic loading[J]. Composites Part B: Engineering,2017,131:50-61. DOI: 10.1016/j.compositesb.2017.08.006
[22] YANG H, YAO X, YUAN L, et al. Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading[J]. Nanoscale,2019,11(2):578-586. DOI: 10.1039/C8NR07737A
[23] YANG H, YUAN L, YAO X, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading[J]. Composites Science and Technology,2020,200:108474. DOI: 10.1016/j.compscitech.2020.108474
[24] SHEN L, WANG F Q, YANG H, et al. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend[J]. Polymer Testing,2011,30(4):442-448. DOI: 10.1016/j.polymertesting.2011.03.007
[25] CUI X, JIANG Y, XU Z, et al. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability[J]. Composites Part B: Engineering,2021,211:108641. DOI: 10.1016/j.compositesb.2021.108641
[26] LU Y, WU H, LIU J, et al. Electrical percolation of silicone rubber filled by carbon black and carbon nanotubes researched by the Monte Carlo simulation[J]. Journal of Applied Polymer Science,2019,136(46):48222. DOI: 10.1002/app.48222
[27] HUANG J C. Carbon black filled conducting polymers and polymer blends[J]. Advances in Polymer Technology,2002,21(4):299-313. DOI: 10.1002/adv.10025
[28] DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science,2014,39(4):627-655. DOI: 10.1016/j.progpolymsci.2013.07.007
[29] SURVE M, PRYAMITSYN V, GANESAN V. Universality in structure and elasticity of polymer-nanoparticle gels[J]. Physical Review Letters,2006,96(17):177805. DOI: 10.1103/PhysRevLett.96.177805
[30] FAN Z, GUO R, YANG Z, et al. The effect of the co-blending process on the sensing characteristics of conductive chloroprene rubber/natural rubber composites[J]. Polymers,2022,14(16):3326. DOI: 10.3390/polym14163326
[31] LI Z, QI X, XU L, et al. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring[J]. ACS Applied Materials & Interfaces,2020,12(37):42179-42192. DOI: 10.1021/acsami.0c12425
[32] ZHOU B, LIU Z, LI C, et al. Fabrication of ultrasensitive and flexible strain sensor based on multi-wall carbon nanotubes coated electrospun styrene-ethylene-butylene-styrene block copolymer fibrous tubes[J]. European Polymer Journal,2022,178:111501. DOI: 10.1016/j.eurpolymj.2022.111501
[33] ZHAO S, LI Y, WU F, et al. Humidity response of single carbon nanocoil and its temperature sensor independent of humidity and strain[J]. Applied Surface Science,2022,605:154745. DOI: 10.1016/j.apsusc.2022.154745
[34] WEN N, GUAN X, FAN Z, et al. A highly stretchable and breathable self-powered dual-parameter sensor for decoupled temperature and strain sensing[J]. Organic Electronics,2023,113:106723. DOI: 10.1016/j.orgel.2022.106723
[35] WANG H, HE X, HUANG X, et al. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability[J]. Materials Today Chemistry,2023,28:101361. DOI: 10.1016/j.mtchem.2022.101361
[36] KIM S, YOO B, MILLER M, et al. EGaIn-silicone-based highly stretchable and flexible strain sensor for real-time two joint robotic motion monitoring[J]. Sensors and Actuators A: Physical,2022,342:113659. DOI: 10.1016/j.sna.2022.113659
[37] WANG H, YANG L, ZHANG X, et al. Effect of different prestretching index and preloading on actuation behaviors of dielectric elastomer actuator[J]. Journal of Materials Research and Technology,2021,15:4064-4073. DOI: 10.1016/j.jmrt.2021.10.029
[38] YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology, 2018, 167: 371-378.
[39] HEINRICH G, KLÜPPEL M. Recent advances in the theory of filler networking in elastomers[J]. Filled Elastomers Drug Delivery Systems,2002,160:1-44.
-
期刊类型引用(7)
1. 房恩惠,杨树桐,庞瑞阳,孙忠科,兰天. 树脂预浸技术提升CFRP-混凝土界面力学性能研究. 复合材料科学与工程. 2025(02): 117-128 . 百度学术
2. 丛龙宇,张方,钱永久. 外部粘贴CFRP-ECC粘结性能的影响因素试验. 复合材料学报. 2025(03): 1538-1554 . 本站查看
3. 温小栋,王俊豪,殷光吉,邵璟璟,冯蕾. 海水与腐蚀电流耦合作用下铝合金与混凝土界面黏结性能. 建筑结构学报. 2024(04): 237-246 . 百度学术
4. 朱红兵,付正昊,王烨,陈经毅. 界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响. 复合材料学报. 2024(06): 3154-3167 . 本站查看
5. 叶华勇. 界面处理方式对CFRP-ECC复合加固混凝土梁受弯性能影响研究. 福建建筑. 2024(11): 49-54 . 百度学术
6. 姜天华,万聪聪,颜斌. BFRP筋与钢-PVA混杂ECC粘结性能. 复合材料学报. 2023(06): 3499-3512 . 本站查看
7. 昝鹏,陈燕萍. 水利工程混凝土复合材料的制备与力学性能分析. 塑料助剂. 2023(03): 30-33 . 百度学术
其他类型引用(9)
-
目的
隔震支座广泛应用于桥梁的抗震防护,然而,由于交通事故、地震作用、局部温度变化等会导致隔震支座的正常运行。因此,对隔震支座的服役性能监测至关重要。金属和半导体等传感器已经广泛使用于结构健康监测传感材料,但固定方向传感、有限可拉伸性、低灵敏度、小应变范围等特点,限制了对隔震支座的损伤监测,因此,需要可拉伸应变传感材料来对隔震支座进行损伤监测。可拉伸应变传感材料通常采用弹性体作为传感材料的基体。然而,制备低成本及高稳定性的可拉伸应变传感材料仍然具有挑战。同时,弹性体传感材料在电阻-应变响应性能中通常出现滞后效应,导致肩峰现象,从而影响可拉伸应变传感材料的应用,为了解决这一问题,本文通过向弹性体添加双组分导电碳材料,减少滞后效应,并消除肩峰现象,提高可拉伸应变传感材料的稳定性。
方法利用开炼法制备出导电橡胶复合材料。首先将甲基乙烯基硅橡胶(VMQ)在开炼机上薄通,随后加入多壁碳纳米管(MWCNT)与导电碳黑(CB),使两种碳材料均匀混炼在VMQ中,随后加入二氧化硅(SiO)、羟基硅油(HPMS)、2,5二甲基-2,5-双-(叔丁基过氧)乙烷(DBPMH)进一步混炼使物质混合均匀。其次,在平板压片机上硫化成型,最后在,烘箱里进行二段硫化。其中VMQ为4 g,CB固定为2 wt%,MWCNT为变量1~10 wt%,SiO为10 wt%,HPMS为5 wt%,DBPMH为1 wt%。采用扫描电镜(SEM)观察碳材料在基体中的分散情况。数字万用表测量复合材料的电阻。电子万能试验机对复合材料的力学性能进行测试。将复合材料固定在电子万能试验机上进行拉伸-卸载循环试验,同时采用数字万用表对电信号进行实时记录。
结果(1)MWCNT与CB之间形成的协同效应,与单独导电填料相比,复合材料的电导率提升,形成了三维隧穿导电网络,渗流阈值从7.23 wt%降低至1.24 wt%,降低了82%。(2)当添加2 wt%的CB后,复合材料的力学性能均得以提升,最大拉伸强度(6.06 MPa)、断裂伸长率(585%)、杨氏模量(3.12 MPa)分别提高了41%、34%、66%。(3)不同尺寸的MWCNT与CB之间的协同效应,形成更加致密的导电网络,减少了VMQ的滞后效应,消除了复合材料中的肩峰现象,与单独导电填料相比,明显提高了复合材料在电阻-应变响应性能中的稳定性及恢复性。(4)通过SEM分析,发现单导电填料在基体中的分散性较差,团聚现象严重。而组合导电填料在基体中的分散性更好,导电网络更加致密。
结论通过CB与MWCNT之间的协同效应,降低了复合材料的渗流阈值,提升了复合材料的力学性能。同时,消除了导电弹性体复合材料在电阻-应变响应中存在的肩峰现象问题,明显提高了复合材料的稳定性及恢复性。本研究制备的橡胶复合材料在隔震支座的损伤监测中具有巨大的潜力。