碳纤维/聚合物复合材料热导率近十年研究进展

Research progress on thermal conductivity of carbon fiber/polymer composites in recent ten years

  • 摘要: 本文综述了过去十年间在提升碳纤维增强聚合物(CFRP)复合材料热导性能方面取得的进展。具体从聚合物复合材料的导热原理入手,重点分析了碳纤维(CFs)自身对CFRP复合材料热导率的影响,包括含量、长度、取向等。此外,综述了提升CFRP复合材料热导率的4种方法,包括CFs表面改性、CFs定向处理、加入导热填料及构建三维连续导热通道等策略对改善CFRP复合材料热导率的作用。最后进行了展望,将CFs同向排列并与多种形状尺寸的高热导率填料耦合构建连续的导热通道,制备低负载填料、高热导率的CFRP复合材料将成为未来的研究方向,为下一代导热材料的开发和优化提供指导。

     

    Abstract: In this paper, the progress made by researchers in improving the thermal conductivity of carbon fiber-reinforced polymer (CFRP) composites in the past decade is summarized. Based on the principle of thermal conductivity of polymer composites, this paper focuses on the analysis of the influence of carbon fiber (CFs) on the thermal conductivity of CFRP composites, including content, length, and orientation. In addition, four methods to improve the thermal conductivity of CFRP composites are summarized, including surface modification of CFs, directional treatment of CFs, adding thermal conductive fillers and designing three-dimensional continuous thermal channels, which have an impact on the thermal conductivity of CFRP composites. Finally, the prospect of carbon fibers arranged in the same direction and combined with high thermal conductivity fillers with different shapes and sizes to construct continuous thermal conduction channels is prospected. The preparation of CFRP composites with low filling content and high thermal conductivity will become the research direction in the future, which will provide guidance for the development and optimization of the next generation of thermal conductivity materials.

     

/

返回文章
返回