稀土氧化铈增强的钴基电解水催化材料及其性能

Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties

  • 摘要: 探索和开发高效且低成本的析氢反应(HER)和析氧反应(OER)电催化剂,对于解决能源危机和环境污染至关重要但仍具有挑战性。本文在三维的泡沫镍基底上设计并制备了一种由超薄的氧化铈和磷化钴纳米片组成的自支撑电极(CeO2-CoP/NF)。当电流密度为10 mA·cm−2时,CeO2-CoP/NF在1 mol/L KOH和0.5 mol/L H2SO4中的析氢过电位分别为124 mV和142 mV;CeO2-CoP/NF也能呈现优越的OER活性,电流密度为100 mA·cm−2时,在1 mol/L KOH中呈现的析氧过电位为328 mV,并且具有更优越的循环稳定性。实验结果表明:CeO2的引入能够减少电解液的侵蚀和提升CoP材料的电解水催化性能。这项工作为高性能的水裂解电催化剂的发展提供了新的见解。

     

    Abstract: The exploration and development of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are crucial but challenging for addressing the energy crisis and environmental pollution. In this paper, a self-supporting electrode composed of ultrathin ceria and cobalt phosphide nanosheets (CeO2-CoP/NF) was designed and fabricated on a three-dimensional nickel foam substrate. At 10 mA·cm−2, the hydrogen evolution overpotential of CeO2-CoP/NF is 124 mV and 142 mV at 1 mol/L KOH and 0.5 mol/L H2SO4, respectively. In addition, CeO2-CoP/NF can also demonstrate superior OER activity at 100 mA·cm−2, exhibiting an oxygen evolution overpotential of 328 mV in 1 mol/L KOH, and also has superior cycle stability. The experimental results show that the introduction of CeO2 can reduce the erosion of the electrolyte and significantly improve the electrochemical performance of the CoP material. This work provides new insights into the development of high-performance electrocatalysts for water splitting.

     

/

返回文章
返回