ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能

吴海华, 傅文鑫, 刘少康, 晁彬, 鲍云天

吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. DOI: 10.13801/j.cnki.fhclxb.20230627.003
引用本文: 吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. DOI: 10.13801/j.cnki.fhclxb.20230627.003
WU Haihua, FU Wenxin, LIU Shaokang, et al. Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. DOI: 10.13801/j.cnki.fhclxb.20230627.003
Citation: WU Haihua, FU Wenxin, LIU Shaokang, et al. Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. DOI: 10.13801/j.cnki.fhclxb.20230627.003

ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能

基金项目: 国家自然科学基金 (51575313)
详细信息
    通讯作者:

    吴海华,博士,教授,博士生导师,研究方向为3D打印吸波材料及其工程应用技术 E-mail: wuhaihua@ctgu.edu.cn

  • 中图分类号: TB333

Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites

Funds: National Natural Science Foundation of China (51575313)
  • 摘要: 开发轻质、高效的吸波复合材料是解决电磁污染问题的重要途径之一。本文采用两步法制备ZnO-石墨烯-热塑性聚氨酯弹性体橡胶 (TPU)/聚乳酸 (PLA)吸波复合材料,通过XRD、拉曼光谱、SEM和矢量网络分析仪分别对复合材料的物相结构、微观形貌和电磁特性进行表征,并研究不同ZnO/石墨烯吸波剂组合对复合材料吸波性能的影响,揭示ZnO和石墨烯协同吸波机制。研究结果表明:随着ZnO含量的增加,吸波效果先增强后减弱。适量的ZnO分散在基体中,使复合材料的缺陷程度增加,这丰富了异质界面,增强了界面极化和偶极极化,进而改善了复合材料的吸波性能。当ZnO添加量仅为2wt%时吸波效果最佳,在5.6 mm厚度下,其最小反射损耗为−49.2 dB,有效吸收带宽为2.0 GHz。优异的吸波效果源于良好的阻抗匹配和界面极化损耗、偶极极化损耗、电导损耗之间的协同作用。此外相比化学法制备的吸波材料,ZnO-石墨烯-TPU/PLA复合材料的制备过程简单环保,吸波剂组分可调,轻质高效可规模化生产,有望用于复杂吸波结构制造。

     

    Abstract: Developing light-weight and high-efficiency absorbing composite materials is one of the important ways to solve the electromagnetic pollution. In this paper, ZnO-graphene (GR)/polylactic acid (PLA)/thermoplastic polyurethane (TPU) composite materials were prepared by a two-step method and the phase structure, micromorphology and electromagnetic characteristics of the composite were characterized by XRD, Raman spectroscopy, SEM and vector network analyzer. The effects of different combinations of ZnO/GR on the microwave absorbing properties of the composites were studied, and the synergistic mechanism was revealed. The results show that with the increase of the content of ZnO, the microwave absorbing effect increases at first and then decreases. Proper amount of ZnO dispersed in the matrix increases the defects of the composites enriching the heterogeneous interface, enhancing the interface polarization and dipolarization, and improving the microwave absorbing properties of the composites. When the content of ZnO is 2wt% , at 5.6 mm thickness, the minimum reflection loss is −49.2 dB and the effective absorption bandwidth is 2.0 GHz meaning the best absorption efficiency. The excellent absorbing effect is attributed to the good impedance matching and the synergy among the interface polarization loss, the dipolarization loss and the conductivity loss. In addition, the preparation process of ZnO-GR/PLA/TPU composite is simple and environment-friendly, and the component of absorbing agent can be adjusted which is expected to be used in the manufacturing of complex absorption structures.

     

  • 图  1   石墨烯(GR) (a)和ZnO (b)的SEM图像

    Figure  1.   SEM images of graphene (GR) (a) and ZnO (b)

    图  2   (a) ZnO-GR-TPU/PLA复合线材;(b) 同轴环

    Figure  2.   (a) ZnO-GR-TPU/PLA composite filaments; (b) Coaxial rings

    图  3   ZnO-GR-TPU/PLA复合材料XRD图谱(a)和拉曼光谱(b)

    Figure  3.   XRD patterns (a) and Raman spectra (b) of the ZnO-GR-TPU/PLA composites

    ID/IG—Intensity ratio of peak D to peak G

    图  4   ZnO-GR-TPU/PLA复合粉末的SEM图像:(a) ZN0;(b) ZN2;(c) ZN4;(d) ZN6;(e) ZN8

    Figure  4.   SEM images of ZnO-GR-TPU/PLA composite powder: (a) ZN0; (b) ZN2; (c) ZN4; (d) ZN6; (e) ZN8

    图  5   ZnO-GR-TPU/PLA复合材料的电磁参数:(a) 复介电常数实部ε';(b) 复介电常数虚部ε'';(c) 介电损耗角正切tanδe

    Figure  5.   Electromagnetic parameters of ZnO-GR-TPU/PLA composites: (a) Real part of complex permittivity ε'; (b) Imaginary part of complex permittivity ε''; (c) Dielectric loss tangent tanδe

    图  6   ZnO-GR-TPU/PLA复合材料的Colo-Colo曲线:(a) ZN0;(b) ZN2;(c) ZN4;(d) ZN6;(e) ZN8

    Figure  6.   Colo-Colo curves of ZnO-GR-TPU/PLA composites: (a) ZN0; (b) ZN2; (c) ZN4; (d) ZN6; (e) ZN8

    图  7   ZnO-GR-TPU/PLA复合材料的衰减常数及阻抗匹配

    Figure  7.   Attenuation constant and impedance matching of ZnO-GR-TPU/PLA composites

    8   ZnO-GR-TPU/PLA复合材料的反射损耗图与3D映射图:((a), (b)) ZN0;((c), (d)) ZN2;((e), (f)) ZN4;((g), (h)) ZN6;((i), (j)) ZN8

    8.   Reflection loss diagram and 3D mapping diagram of ZnO-GR-TPU/PLA composite materials: ((a), (b)) ZN0; ((c), (d)) ZN2; ((e), (f)) ZN4; ((g), (h)) ZN6; ((i), (j)) ZN8

    RLmin—Minimal reflection loss; d—Depth; EAB—Effectively absorb bandwidth

    表  1   ZnO-GR-热塑性聚氨酯弹性体橡胶(TPU)/聚乳酸(PLA)复合材料成分

    Table  1   Ingredients of ZnO-GR-thermoplasticpolyurethane (TPU)/polylactic acid (PLA) composites

    SampleMass fraction/wt%
    ZnOGRPLATPU
    ZN00585.59.5
    ZN22583.79.3
    ZN44581.99.1
    ZN66580.18.9
    ZN88578.38.7
    下载: 导出CSV

    表  2   近期文献报道ZnO/石墨烯复合材料的吸波性能

    Table  2   Recent literature reports on the absorption properties of ZnO/graphene composites

    MaterialsLoading/wt%MatrixRLmin (Thickness)Ref.
    Starlike ZnO/RGO75Paraffin−77.50 dB (4.5 mm)[9]
    ZnO@RGO75Paraffin−44.50 dB (4.5 mm)[15]
    RGO@NiO/ZnO70PS−42.50 dB (2.15 mm)[41]
    GR/ZnO hollow sphere50Paraffin−45.05 dB (2.2 mm)[42]
    3D-ZFO/GNs50Paraffin−34.56 dB (1.3 mm)[43]
    ZnO/ZnO nanocrystal@RGO foam25Paraffin−38.00 dB (3.2 mm)[26]
    RGO/ZnO-mrs15Paraffin−38.50 dB (2.0 mm)[44]
    MF/ZnO@Reduced graphene oxide 5Paraffin−63.20 dB (4.1 mm)[33]
    5wt%GR+2wt%ZnO 7PLA−49.20 dB (5.6 mm)This work
    Notes: RGO—Reduced graphene oxide; ZFO—ZnFe2O4; GNs—Graphene nanosheets; mrs—Microrods; MF—Carbonized melamine foame; PS—Polystyrene.
    下载: 导出CSV
  • [1]

    SONG M, WANG C, ZHU C, et al. An effective fabrication and highly tunable microwave absorption of nitrogen-doped graphene[J]. Diamond and Related Materials,2022,129:109348. DOI: 10.1016/j.diamond.2022.109348

    [2]

    WANG S M, HUANG X G, ZHANG W L. Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties[J]. Applied Physics A,2021,127(10):742. DOI: 10.1007/s00339-021-04894-y

    [3]

    SHANG T, LU Q S, ZHAO J J, et al. Novel three-dimensional graphene-like networks loaded with Fe3O4 nanoparticles for efficient microwave absorption[J]. Nanomaterials,2021,11(6):1444. DOI: 10.3390/nano11061444

    [4]

    LYU H L, YANG Z H, PAN H G, et al. Electromagnetic absorption materials: Current progress and new frontiers[J]. Progress in Materials Science, 2022, 127: 100946.

    [5]

    MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites Part B: Engineering,2018,137:260-277. DOI: 10.1016/j.compositesb.2017.11.023

    [6]

    QU B, ZHU C L, LI C Y, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces,2016,8(6):3730-3735.

    [7]

    WANG S S, ZHAO Y, XUE H L, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J]. Materials Letters,2018,223:186-189. DOI: 10.1016/j.matlet.2018.04.050

    [8]

    YIN P F, DENG Y, ZHANG L M, et al. One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band[J]. Ceramics International,2018,44(17):20896-20905.

    [9]

    FENG W, WANG Y M, CHEN J C, et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics,2017,19(22):14596-14605. DOI: 10.1039/C7CP02039B

    [10]

    WANG Q A, CHE J B, WU W F, et al. Contributing factors of dielectric properties for polymer matrix composites[J]. Polymers,2023,15(3):590. DOI: 10.3390/polym15030590

    [11]

    QUAN B, LIANG X H, XU G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry,2017,41(3):1259-1266. DOI: 10.1039/C6NJ03052A

    [12] 杜宗波, 时双强, 陈宇滨, 等. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4):74-84. DOI: 10.11868/j.issn.1001-4381.2020.000914

    DU Zongbo, SHI Shuangqiang, CHEN Yubin, et al. Research progress in dielectric graphene microwave absorbing composites[J]. Journal of Materials Engineering,2022,50(4):74-84(in Chinese). DOI: 10.11868/j.issn.1001-4381.2020.000914

    [13]

    VENKIDUSAMY V, NALLUSAMY S, NAMMALVAR G, et al. ZnO/graphene composite from solvent-exfoliated few-layer graphene nanosheets for photocatalytic dye degradation under sunlight irradiation[J]. Micromachines,2023,14(1):189. DOI: 10.3390/mi14010189

    [14]

    HSUEH T J, DING R Y. A room temperature ZnO-NPs/MEMS ammonia gas sensor[J]. Nanomaterials,2022,12(19):3287. DOI: 10.3390/nano12193287

    [15]

    SUN X D, MA G Y, LYU X L, et al. Controllable fabrication of Fe3O4/ZnO core-shell nanocomposites and their electromagnetic wave absorption performance in the 2-18 GHz frequency range[J]. Materials,2018,11(5):780. DOI: 10.3390/ma11050780

    [16] 熊自明, 吴凡, 张中威, 等. ZnO@ RGO复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(3):1152-1162.

    XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1152-1162(in Chinese).

    [17]

    WANG J W, WANG B B, WANG Z, et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2021,586:479-490. DOI: 10.1016/j.jcis.2020.10.111

    [18] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):158-168. DOI: 10.13801/j.cnki.fhclxb.20210311.003

    WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):158-168(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210311.003

    [19] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302. DOI: 10.13801/j.cnki.fhclxb.20210819.008

    YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210819.008

    [20] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316.

    HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316(in Chinese).

    [21]

    YU F, HUANG H X. Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles[J]. Polymer Testing,2015,45:107-113. DOI: 10.1016/j.polymertesting.2015.06.001

    [22]

    ELMAHAISHI M F, AZIS R S, ISMAIL I, et al. A review on electromagnetic microwave absorption properties: Their materials and performance[J]. Journal of Materials Research and Technology, 2022, 20: 2188-2220.

    [23]

    BULDU-AKTURK M, TOUFANI M, TUFANI A, et al. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices[J]. Nanoscale,2022,14(8):3269-3278. DOI: 10.1039/D2NR00018K

    [24]

    DUTTA A, MISHRA S, SAHA S K, et al. Boosting the supercapacitive performance of ZnO by 3-dimensional conductive wrapping with graphene sheet[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32(1): 180-190.

    [25]

    GUO G L, HUANG L, CHANG Q H, et al. Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor[J]. Applied Physics Letters,2011,99(8):083111. DOI: 10.1063/1.3629789

    [26]

    LIU X, LU X L, GUAN H J, et al. Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties[J]. Ceramics International,2021,47(23):33584-33595. DOI: 10.1016/j.ceramint.2021.08.268

    [27]

    DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon,2021,179:566-578. DOI: 10.1016/j.carbon.2021.04.050

    [28]

    QIN M, ZHANG L M, WU H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science,2022,9(10):2105553. DOI: 10.1002/advs.202105553

    [29]

    ZHOU C, GENG S, XU X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption[J]. Carbon,2016,108:234-241. DOI: 10.1016/j.carbon.2016.07.015

    [30]

    LI J, WANG L, ZHANG D, et al. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers[J]. Materials Chemistry Frontiers,2017,1(9):1786-1794. DOI: 10.1039/C7QM00067G

    [31]

    YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal,2018,352:510-518. DOI: 10.1016/j.cej.2018.07.064

    [32]

    LI F, ZHUANG L, ZHAN W W, et al. Desirable microwave absorption performance of ZnFe2O4@ZnO@rGO nanocomposites based on controllable permittivity and permeability[J]. Ceramics International,2020,46(13):21744-21751. DOI: 10.1016/j.ceramint.2020.05.283

    [33]

    ZHANG Q C, DU Z J, GUO T, et al. Three-dimensional carbon foam modified with starlike-ZnO@ reduced graphene oxide for microwave absorption with low filler content[J]. Journal of Alloys and Compounds,2022,897:163200. DOI: 10.1016/j.jallcom.2021.163200

    [34]

    TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon,2021,172:542-555. DOI: 10.1016/j.carbon.2020.10.062

    [35]

    SHU X F, REN H D, JIANG Y, et al. Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites[J]. Journal of Materials Chemistry C,2020,8(8):2913-2926. DOI: 10.1039/C9TC05658K

    [36]

    ZHANG W D, ZHANG X, ZHU Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J]. Journal of Colloid and Interface Science,2021,586:457-468. DOI: 10.1016/j.jcis.2020.10.109

    [37]

    MA Z, ZHANG Y, CAO C T, et al. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite[J]. Physica B: Condensed Matter,2011,406(24):4620-4624. DOI: 10.1016/j.physb.2011.09.039

    [38]

    LIAN Y L, HAN B H, LIU D W, et al. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption[J]. Nano-Micro Letters,2020,12(1):153. DOI: 10.1007/s40820-019-0337-2

    [39]

    LU B, DONG X L, HUANG H, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2008,320(6):1106-1111. DOI: 10.1016/j.jmmm.2007.10.030

    [40]

    WEI B, ZHOU J T, YAO Z J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Applied Surface Science,2020,508:145261. DOI: 10.1016/j.apsusc.2020.145261

    [41]

    THI Q V, PARK S J, JEONG J, et al. A nanostructure of reduced graphene oxide and NiO/ZnO hollow spheres toward attenuation of electromagnetic waves[J]. Materials Chemistry and Physics,2021,266:124530. DOI: 10.1016/j.matchemphys.2021.124530

    [42]

    HAN M K, YIN X W, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2014,2(39):16403-16409. DOI: 10.1039/C4TA03033H

    [43]

    ZHOU J T, WEI B, WANG M Q, et al. Three dimensional flower like ZnFe2O4 ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits[J]. Journal of Alloys and Compounds,2021,889:161734. DOI: 10.1016/j.jallcom.2021.161734

    [44]

    LIU Y, DU X M, WU C Y, et al. Reduced graphene oxide decorated with ZnO microrods for efficient electromagnetic wave absorption performance[J]. Journal of Materials Science: Materials in Electronics,2020,31(11):8637-8648. DOI: 10.1007/s10854-020-03399-3

  • 期刊类型引用(8)

    1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
    2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
    3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
    4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
    5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
    6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
    7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
    8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术

    其他类型引用(4)

  • 石墨烯因其强介电损耗和高电导率等特点,可作为高性能电磁波衰减材料。为了解决单一石墨烯材料的界面阻抗失配问题,常引入其他材料作为增强其吸波性能。目前,大多数研究将磁性材料与石墨烯结合起来,以获得优异的微波吸收性能,但磁性材料的加入会大大增加吸波材料的密度,并且传统的化学制备法存在工序繁琐、产量低、难以成型等问题。

    为了获得较低密度的吸波复合材料,本文在石墨烯的基础上添加了介电材料ZnO,采用球磨和熔融挤出两步法制备了可用于FDM3D打印的ZnO-石墨烯/PLA/TPU吸波复合材料。通过调节ZnO(2%~8%)含量来改善阻抗匹配进而提高吸波性能。ZnO的加入促进了复合材料的界面极化和偶极极化,实现了吸波材料低密度和强吸收。研究结果表明,当石墨烯含量为5wt%,ZnO添加量仅为2wt%时吸波效果最佳,在5.6 mm厚度下,其最小反射损耗为-49.2 dB,有效吸收带宽为2.0 GHz。同时得益于FDM3D打印的成型方法,本文所制备的复合吸波线材可打印复杂的吸波结构及器件。

    5wt%GR、2wt%ZnO时吸波复合材料的反射损耗图与3D映射图

    ZnO-石墨烯/PLA/TPU吸波复合材料的衰减常数图

图(9)  /  表(2)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  409
  • PDF下载量:  56
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-23
  • 录用日期:  2023-06-10
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回