2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料高温力学行为及损伤机制

High temperature mechanical behavior and damage mechanism of 2.5D woven carbon fiber-glass fiber/bismaleimide resin composite

  • 摘要: 采用三维纺织技术与树脂传递模塑工艺(RTM)制备了2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料,分别在室温(25℃)和高温(150℃、240℃、300℃)环境下对复合材料进行了三点弯曲和层间剪切力学性能测试,探究了温度对复合材料力学行为及损伤机制的影响。结果表明:温度对2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的力学特性和损伤模式均有显著影响。温度上升导致纤维/基体界面结合力减弱,复合材料在300℃下的弯曲强度、弯曲模量和层间剪切强度相比室温环境分别降低了23.06%、70.01%和18.93%。弯曲载荷下,2.5D机织混杂复合材料的室温破坏模式主要以局部的纤维断裂和基体开裂为主,而高温损伤则以纤维/基体界面脱粘为主导。剪切载荷下,2.5D机织混杂复合材料的室温破坏模式主要为分层破坏,而随着温度升高,复合材料因基体软化出现塑性变形,基体开裂、界面脱粘及分层破坏决定了材料的最终失效。

     

    Abstract: 2.5D woven carbon fiber-glass fiber/bismaleimide resin composite was prepared by three-dimensional textile technology and resin transfer molding (RTM), and the mechanical properties of three-point bending and interlaminar shear were tested at room temperature (25℃) and high temperature (150℃, 240℃, 300℃), respectively, and the influence of temperature on the mechanical behavior and damage mechanism of the composites was explored. The results show that temperature has a significant effect on the mechanical properties and damage mode of 2.5D woven carbon fiber-glass fiber/bismaleimide resin composites. Temperature rise leads to weakening of fiber/matrix interface adhesion. Compared with the room temperature environment, the flexural strength, flexural modulus and interlaminar shear strength of the composite at 300℃ decrease by 23.06%, 70.01% and 18.93%. Under bending load, the failure mode of 2.5D woven hybrid composites at room temperature is mainly dominated by local fiber fracture and matrix cracking, while high temperature damage is dominated by fiber/matrix interface debonding. Under shear load, the failure mode of 2.5D woven hybrid composites at room temperature is mainly stratified failure. With the increase of temperature, the composites appear plastic deformation due to the softening of matrix, matrix cracking, interface debonding and stratified failure determine the final failure of the material.

     

/

返回文章
返回