光沉积Pt复合石墨相氮化碳实现高效光催化产氢

Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production

  • 摘要: 贵金属作为助催化剂,可以提高石墨相氮化碳(g-C3N4)光催化产氢的性能,引起了人们的广泛关注。但是,由于贵金属的不可再生性和高价格,“更少的贵金属,更好的性能”始终是目标。为了实现这一目标,通过光沉积还原法成功制备了一系列不同铂负载量氮化碳复合材料(Pt/CN),并用于光催化产H2。结果表明:不同Pt负载量的Pt/CN复合材料都表现出优异的光催化产氢性能。并发现当Pt的负载量为0.5wt%时, Pt/CN复合材料具有最优异的光催化产氢活性,产氢量为409.2 μmol/g,是纯CN (17.8 μmol/g)的23倍,同时证实了Pt和CN二者之间形成了肖特基势垒,使导带的电子快速迁移到Pt上,降低了CN的电子-空穴复合速率。并且Pt作为光催化分解水的活性位点,促进水中的绝大部分氢质子快速吸附到Pt位点,得到电子被还原为H2,实现了高效光催化产氢。

     

    Abstract: Noble-metal, as co-catalysts, can improve the photocatalytic hydrogen production performance of graphitic carbon nitride (g-C3N4). It has been paid extensive attention, however, due to the non-renewability and high expense of noble-metal, "less noble-metal, better performance" is always the goal. To achieve this goal, composite CN with different Pt loadings (Pt/CN) was successfully prepared by photoreduction deposition and used for photocatalytic hydrogen production. The results show that Pt/CN with different Pt loadings can improved photocatalytic hydrogen production performance than CN. It is found that Pt/CN loaded with 0.5wt%Pt have the best photocatalytic hydrogen production activity, with a hydrogen production rate of 409.2 μmol/g, which is 23 times higher than that of CN (17.8 μmol/g). At the same time, it is confirmed that a Schottky barrier is formed between Pt and CN, which makes the electrons of the conduction band migrate rapidly to Pt, which reduces the electron-hole recombination rate of CN. Moreover, Pt is used as the active site of photocatalytic water splitting, which promotes the rapid adsorption of most of the hydrogen protons in the water to the Pt site, and the electrons are reduced to hydrogen, realizing efficient photocatalytic hydrogen production.

     

/

返回文章
返回