Abstract:
Recycled concrete aggregate is often mixed with recycled brick aggregate, which is difficult to separate. The mixed use of recycled brick and recycled concrete aggregate is more in line with the actual situation. Different water-binder ratios (0.3 and 0.4) and different recycled aggregate replacement rates (0%, 50%, 100% replaced by volume method) were used as control parameters to study the compressive strength, splitting tensile strength, flexural strength, prism compressive strength and uniaxial compressive stress-strain relationship of eight groups of recycled brick-concrete aggregate concrete with different mix ratios. The results show that compared with natural aggregate concrete, the mechanical properties of recycled concrete with different mix ratios decrease to varying degrees. With the increase of recycled brick aggregate content, the mechanical properties decrease significantly. When the replacement rate of brick aggregate reaches 100%, the compressive strength decreases by up to 29.9%, but it can still ensure a certain mechanical property reserve. In this paper, the influence mechanism of water-binder ratio and recycled brick aggregate content on the mechanical properties of concrete is explored. Based on the experimental data, the uniaxial compression constitutive model of recycled brick concrete and the conversion formula of mechanical properties of recycled brick concrete are established. The research results can provide reference for the analysis and design of such recycled concrete structures.