RTM用改性硅炔杂化树脂及其复合材料

胡文杰, 张钧钧, 高明宇, 蒋峰光, 刘敏, 周权

胡文杰, 张钧钧, 高明宇, 等. RTM用改性硅炔杂化树脂及其复合材料[J]. 复合材料学报, 2024, 41(2): 685-693. DOI: 10.13801/j.cnki.fhclxb.20230524.002
引用本文: 胡文杰, 张钧钧, 高明宇, 等. RTM用改性硅炔杂化树脂及其复合材料[J]. 复合材料学报, 2024, 41(2): 685-693. DOI: 10.13801/j.cnki.fhclxb.20230524.002
HU Wenjie, ZHANG Junjun, GAO Mingyu, et al. Modified silicone alkyne hybrid resin for RTM and its composite[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 685-693. DOI: 10.13801/j.cnki.fhclxb.20230524.002
Citation: HU Wenjie, ZHANG Junjun, GAO Mingyu, et al. Modified silicone alkyne hybrid resin for RTM and its composite[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 685-693. DOI: 10.13801/j.cnki.fhclxb.20230524.002

RTM用改性硅炔杂化树脂及其复合材料

基金项目: 国家自然科学基金(52173074)
详细信息
    通讯作者:

    周权,博士,教授,博士生导师,研究方向为耐高温树脂及其复合材料 E-mail: qzhou@ecust.edu.cn

  • 中图分类号: TB332

Modified silicone alkyne hybrid resin for RTM and its composite

Funds: National Natural Science Foundation of China (52173074)
  • 摘要: 树脂传递模塑(RTM)成型工艺是一种液体闭模成型工艺,成品表面光滑、安全环保、成本较低,极具发展潜力。硅炔杂化树脂是一种耐高温性能优异的有机无机杂化树脂,在航空航天领域均有广泛应用,但其与纤维的结合性能较差,复合材料力学性能不佳,成为制约其发展应用的主要因素。本文以苯并噁嗪树脂(PBZ)和氨基稀释剂(PAD)共混改性聚(间二乙炔基苯-甲基氢硅烷)树脂(PSA),制备了适用于RTM成型工艺的改性硅炔杂化树脂(PPA)。通过DSC、FTIR、流变仪、旋转黏度计和热重等方法对PPA树脂的RTM成型工艺、固化行为及耐热性能进行分析。结果表明:PPA树脂的加工窗口宽,可以实现RTM成型的目标,但固化温度高于PSA树脂;PPA树脂的耐热性能优异,其中PPA-1 (PSA∶PBZ∶PAD质量比为5∶1∶2)树脂在氮气和空气中质量损失5%的温度(Td5)分别为585.4℃和568.3℃,1000℃质量保留率分别为88.3% 和26.0%。复合材料力学性能测试表明,石英纤维增强PPA树脂复合材料(QF/PPA)力学性能随PBZ含量的增加而逐渐升高,其中QF/PPA-1常温下弯曲强度为346.2 MPa,层间剪切强度为21.4 MPa,较QF/PSA复合材料分别提高了120.6%和72.6%,400℃热老化2 h后的弯曲强度和层间剪切强度分别为256.5 MPa和17.1 MPa,400℃热老化2 h后的力学性能保留率超过70%。

     

    Abstract: Resin transfer molding (RTM) forming process is a liquid closed mold forming process, which has a smooth surface of the finished product, safety and environmentally friendly, low cost, and has great development potential. Silicone alkyne hybrid resin is an organic-inorganic hybrid resin with excellent high-temperature resistance, widely used in aerospace field, but its poor bonding performance with fibers and poor mechanical properties of composites have become the main factors restricting its development and application. Poly(m-diacetylbenzene-methylhydrosilane) resin (PSA) was modified by blending benzoxazine resin (PBZ) and amino diluent (PAD) to prepare modified silicone alkyne hybrid resin (PPA) suitable for RTM molding process. The RTM molding process, curing behavior, and heat resistance of PPA resin were analyzed by DSC, FTIR, rheometer, rotational viscometer, and thermogravimetry. The results show that the processing window of PPA resin is wide, which can achieve the goal of RTM molding, but the curing temperature is higher than that of PSA resin. The heat resistance of PPA resin is excellent, and the temperature of 5% mass loss (Td5) of PPA-1 resin (PSA∶PBZ∶PAD mass ratio 5∶1∶2) resin is 585.4℃ and 568.3℃, respectively. The mass retention rates at 1000℃ is 88.3% and 26.0%, respectively. The mechanical property tests show that the mechanical properties of quartz fiber reinforced PPA resin composites (QF/PPA) gradually increase with the increase of PBZ content. The flexural strength of QF/PPA-1 at room temperature is 346.2 MPa, and the interlaminar shear strength is 21.4 MPa, which is 120.6% and 72.6% higher than that of QF/PSA composites, respectively. After thermal aging at 400℃ for 2 h, the flexural strength and interlaminar shear strength are 256.5 MPa and 17.1 MPa, respectively, and the retention rate of mechanical properties after thermal aging at 400℃ for 2 h exceeds 70%.

     

  • 图  1   聚(间二乙炔基苯-甲基氢硅烷)树脂(PSA)和含乙炔基苯并噁嗪树脂(PBZ)的结构式

    Figure  1.   Structures of poly(m-diacetylbenzene-methylhydrosilane) resin (PSA) and benzoxazine resin (PBZ)

    图  2   PPA-3树脂的黏度-时间曲线

    Figure  2.   Viscosity-time curves of PPA-3 resin

    图  3   PPA树脂的DSC曲线

    Figure  3.   DSC curves of PPA resin

    图  4   PPA树脂的流变曲线

    Figure  4.   Rheological curves of PPA resin

    图  5   不同固化温度的PPA-2树脂红外图谱

    Figure  5.   Infrared spectra of PPA-2 resin at different curing temperatures

    图  6   PPA树脂固化反应机制

    Figure  6.   Curing reaction mechanism of PPA resin

    图  7   PPA树脂的TGA曲线

    Figure  7.   TGA curves of PPA resin

    图  8   石英纤维增强PPA树脂复合材料(QF/PPA)的弯曲强度与层间剪切强度

    RT—Room temperature

    Figure  8.   Flexural strength and interlaminar shear strength of quartz fiber reinforced PPA resin composites (QF/PPA)

    图  9   QF/PPA复合材料的DMA曲线

    tanδ—Loss tangent

    Figure  9.   DMA curves of QF/PPA composite

    图  10   QF/PPA复合材料热老化10 h前后外观变化

    Figure  10.   Appearance change of QF/PPA composites before and after thermal aging

    表  1   不同比例的改性硅炔杂化树脂(PPA)配方

    Table  1   Modified silicone alkyne hybrid resin (PPA) formula with different proportions

    SampleResin mass ratio
    PSAPBZPAD
    PPA-1512
    PPA-2522
    PPA-3532
    Note: PAD—Amino diluent.
    下载: 导出CSV

    表  2   PPA树脂的黏度

    Table  2   Viscosity of PPA resin

    SampleViscosity/(mPa·s)
    25℃30℃40℃
    PSA 740 350100
    PPA-11000 610230
    PPA-217001000400
    PPA-340001800640
    下载: 导出CSV

    表  3   PPA树脂的凝胶时间

    Table  3   Gelation time of PPA resin

    SampleGel time/min
    160℃180℃200℃
    PPA-123.511.05.1
    PPA-220.1 9.34.0
    PPA-318.2 8.13.0
    下载: 导出CSV

    表  4   PPA树脂的TGA数据

    Table  4   TGA data of PPA resin

    SampleTd5/℃Mass retention/%
    AirN2AirN2
    PSA563.1689.831.2691.36
    PPA-1568.3613.726.0189.13
    PPA-2555.4601.823.0488.78
    PPA-3538.6595.921.6688.74
    Note: Td5—Temperature of 5% mass loss.
    下载: 导出CSV

    表  5   QF/PPA复合材料热老化10 h质量损失

    Table  5   Mass loss of QF/PPA composites thermal aging

    SampleMass loss/wt%
    QF/PSA4.28
    QF/PPA-12.06
    QF/PPA-22.50
    QF/PPA-32.80
    下载: 导出CSV
  • [1]

    SHEN Y, YUAN Q, HUANG F, et al. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene[J]. Thermochimica Acta,2014,590:66-72. DOI: 10.1016/j.tca.2014.06.002

    [2]

    LANGE N, DIETRICH P M, LIPPITZ A, et al. New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC)[J]. Surface and Interface Analysis, 2016, 48(7):621-625.

    [3] 陈元俊, 郭康康, 王帆, 等. 含氟硅芳炔树脂的合成与性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(3):368-375.

    CHEN Yuanjun, GUO Kangkang, WANG Fan, et al. Synthesis and performance of fluorine-containing silicon arylacetylene resins[J]. Journal of East China University of Science and Technology,2020,46(3):368-375(in Chinese).

    [4]

    GAO G, ZHANG S, WANG L, et al. Developing highly tough, heat-resistant blend thermosets based on silicon-containing arylacetylene: A material genome approach[J]. ACS Applied Materials & Interfaces,2020,12(24):27587-27597.

    [5]

    MA M, GONG C, LI C, et al.The synthesis and properties of silicon-containing arylacetylene resins with rigid-rod 2, 5-diphenyl-[1, 3, 4]-oxadiazole moieties[J]. European Polymer Journal, 2020, 143(4): 110192.

    [6]

    YANG R, WANG Y, HAO B, et al. Synthesis of ortho-methyltetrahydrophthalimide functional benzoxazine containing phthalonitrile group: Thermally activated polymerization behaviors and properties of its polymer[J]. High Performance Polymers,2021,33(2):196-204. DOI: 10.1177/0954008320954519

    [7]

    CORRIU R, GERBIER P, GUÉRIN C, et al. Poly[(silylene) diacetylene]/finemetal oxide powder dispersions: Use as precursors to silicon-based composite ceramics[J]. Jour-nal of Materials Chemistry,2000,10(9):2173-2182. DOI: 10.1039/b002788j

    [8]

    ITOH M, INOUE K, HIRAYAMA N, et al. Fiber reinforced plastics using a new heat-resistant silicon based polymer[J]. Journal of Materials Science,2002,37(17):3795-3801. DOI: 10.1023/A:1016538014803

    [9]

    ITOH M, INOUE K, IWATA K, et al. New highly heat-resistant polymers containing silicon: Poly(silyleneethynylene-phenyleneethynylene)s[J]. Macromolecules,1997,30(4):694-701. DOI: 10.1021/ma961081f

    [10]

    ITOH M, IWATA K, ISHIKAWA J I, et al. Various silicon-containing polymers with Si(H)C≡C units[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2001,39(15):2658-2669. DOI: 10.1002/pola.1242

    [11] 袁航, 孟庆杰, 张昊, 等. 新型含硅聚芳炔树脂基透波复合材料的制备与性能[J]. 复合材料学报, 2021, 38(11):3629-3639. DOI: 10.13801/j.cnki.fhclxb.20210210.009

    YUAN Hang, MENG Qingjie, ZHANG Hao, et al. Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite[J]. Acta Materiae Compositae Sinica,2021,38(11):3629-3639(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210210.009

    [12] 王志德, 白小陶, 贾宇翔, 等. 硼硅炔杂化聚合物的合成及耐热性能[J]. 高分子材料科学与工程, 2022, 38(10):17-22.

    WANG Zhide, BAI Xiaotao, JIA Yuxiang, et al. Synthesis and heat resistance of borosilyne hybrid polymers[J]. Polymer Materials Science and Engineering,2022,38(10):17-22(in Chinese).

    [13] 司书帅, 袁荞龙, 黄发荣. 含炔基酚醛树脂改性PSA及碳纤维布/PSA-EPAN复合材料性能[J]. 复合材料学报, 2018, 35(3):545-552.

    SI Shushuai, YUAN Qiaolong, HUANG Furong. Properties of PSA modified by alkynyl-containing phenolic resin and carbon fabric/PSA-EPAN composites[J]. Acta Materiae Compositae Sinica,2018,35(3):545-552(in Chinese).

    [14]

    TONG Y, YUAN Q, HUANG F. Preparation and characterization of silicon-containing polyarylacetylene/montmorilloite nanocomposites[J]. Journal of Macromolecular Science Part B—Physics,2019,58(4):469-488. DOI: 10.1080/00222348.2019.1590982

    [15] 王茂源, 束长朋, 贾宇翔, 等. 双酚A型邻苯二甲腈树脂改性硅炔杂化树脂及其复合材料性能[J]. 复合材料学报, 2021, 38(11):3652-3660. DOI: 10.13801/j.cnki.fhclxb.20210114.003

    WANG Maoyuan, SHU Changpeng, JIA Yuxiang, et al. Bisphenol A type o-phthalonitrile resin modified silicoalkyne hybrid resin and its composite properties[J]. Acta Materiae Compositae Sinica,2021,38(11):3652-3660(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210114.003

    [16] 王佳明, 贾明印, 董贤文, 等. 树脂传递模塑成型工艺研究进展[J]. 塑料工业, 2021, 49(11):9-14, 43. DOI: 10.3969/j.issn.1005-5770.2021.11.003

    WANG Jiaming, JIA Mingyin, DONG Xianwen, et al. Research progress on the molding process of resin transfer mould[J]. China Plastics Industry,2021,49(11):9-14, 43(in Chinese). DOI: 10.3969/j.issn.1005-5770.2021.11.003

    [17] 金东升, 张庆茂, 张朋, 等. RTM在耐高温复材结构中的应用问题与对策[C]//第二十一届全国复合材料学术会议(NCCM-21). 北京, 2020: 359-364.

    JIN Dongsheng, ZHANG Qingmao, ZHANG Peng, et al. Application problems and counter measures of RTM in high temperature resistant composite structures[C]//The 21st National Academic Conference on Composite Materials (NCCM-21). Beijing, 2020: 359-364(in Chinese).

    [18] 朱怡臻, 王瑛, 陈鸣亮, 等. 先进树脂基复合材料RTM成型工艺研究及应用进展[J]. 塑料工业, 2020, 48(5):18-22, 128. DOI: 10.3969/j.issn.1005-5770.2020.05.002

    ZHU Yizhen, WANG Ying, CHEN Mingliang, et al. Research progress and application of RTM for advanced resin matrix composites[J]. China Plastics Industry,2020,48(5):18-22, 128(in Chinese). DOI: 10.3969/j.issn.1005-5770.2020.05.002

    [19] 赵安安, 杨文凯, 于飞, 等. 大型高性能复合材料构件RTM工艺进展[J]. 南京航空航天大学学报, 2020, 52(1):39-47. DOI: 10.16356/j.1005-2615.2020.01.004

    ZHAO An'an, YANG Wenkai, YU Fei, et al. RTM progress for large-scale high-performance composite components[J]. Journal of Nanjing University of Aeronautics and Astronautics,2020,52(1):39-47(in Chinese). DOI: 10.16356/j.1005-2615.2020.01.004

    [20] 祝庆君. 环氧树脂增韧改性及RTM工艺制备碳纤维复合材料性能研究[D]. 哈尔滨: 黑龙江省科学院石油化学研究院, 2018.

    ZHU Qingjun. Study on the toughening modification of epoxy resin and the properties of carbon fiber composites prepared by RTM process[D]. Harbin: Institute of Petrochemistry, Heilongjiang Academy of Sciences, 2018(in Chinese).

    [21]

    GAJJAR T, SHAH D, JOSHI S, et al. Investigation on dimensional accuracy for CFRP antenna reflectors using autoclave and VARTM processes[C]//Advances in Computational Methods in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Singapore: Springer, 2019: 693-702.

    [22]

    AMIRKHOSRAVI M, PISHVAR M, CENGIZ ALTAN M. Fabricating high-quality VARTM laminates by magnetic consolidation: Experiments and process model[J]. Composites Part A: Applied Science and Manufacturing,2018,114:398-406. DOI: 10.1016/j.compositesa.2018.09.003

    [23] 轩立新, 王茂源, 束长朋, 等. RTM成型工艺用改性硅炔杂化树脂性能研究[J]. 中国胶粘剂, 2020, 29(6):1-6. DOI: 10.13416/j.ca.2020.06.002

    XUAN Lixin, WANG Maoyuan, SHU Changpeng, et al. Study on properties of modified silicone alkyne hybrid resin for RTM molding process[J]. China Adhesives,2020,29(6):1-6(in Chinese). DOI: 10.13416/j.ca.2020.06.002

    [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449−2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of flexural properties: GB/T 1449−2005[S]. Beijing: China Standards Press, 2005(in Chinese).

    [25] 中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1−2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of interlaminar shear strength: GB/T 1450.1−2005[S]. Beijing: China Standards Press, 2005(in Chinese).

  • 目的 

    RTM成型工艺是一种液体闭模成型工艺,成品表面光滑、安全环保、成本较低,极具发展潜力。硅炔杂化树脂是一种耐高温性能优异的有机无机杂化树脂,加工性能良好、介电性能突出,在航空航天、核电等军用民用领域均有广泛应用,但其与纤维的结合性能较差,复合材料力学性能不佳,成为制约其发展应用的主要因素。本文从硅炔杂化树脂(PSA)出发,采用苯并噁嗪PBZ和氨基稀释剂PAD共混改性硅炔杂化树脂PSA,制备了适用于RTM成型工艺的PPA树脂,以提高复合材料的力学性能。

    方法 

    以苯并噁嗪树脂(PBZ)和氨基稀释剂(PAD)共混改性PSA树脂,制备三元树脂体系PSA/PBZ/PAD(PPA树脂),并采用RTM工艺制备复合材料。通过DSC、FTIR分析改性硅炔杂化树脂的结构变化,研究固化过程与反应机理;利用旋转流变仪、旋转黏度计测试改性硅炔杂化树脂黏度及流变特性,分析PPA树脂的RTM成型工艺窗口;采用TGA测定改性硅炔杂化树脂耐热性能变化情况;通过力学试验测试对比PPA树脂复合材料的室温和400 ℃热老化后的力学性能变化;利用DMA及热老化测试研究复合材料的热性能。

    结果 

    (1)PPA树脂在常温下是具有一定黏度的液体状树脂,40 ℃黏度降至800 mPa·s以下,且在40 ℃能够长时间保持黏度稳定。(2)PPA树脂在250 ℃附近存在单一的的固化峰,随着PBZ的含量增加,固化峰值温度逐渐降低。固化过程中PSA树脂、PBZ树脂和PAD之间存在相互反应,包括噁嗪环开环、炔基与氨基的氢胺化反应、Si−H与炔基的硅氢加成反应以及炔基之间的Diels-Alder反应和环三聚反应。(3)PPA树脂固化物质量损失5%的温度(T)和质量保留率均低于PSA树脂固化物,并且T和质量保留率均随着PBZ树脂的增加而逐渐下降,其中PPA-1(PSA:PBZ:PAD质量比为5:1:2)树脂在氮气和空气中的T分别为585.4 ℃ 和568.3 ℃,1000 ℃质量保留率分别为88.3% 和26.0%。(4)石英纤维增强PPA树脂复合材料(QF/PPA)力学性能随PBZ含量的增加而逐渐升高,其中QF/PPA-1常温下弯曲强度为346.2 MPa,层间剪切强度为21.4 MPa,较QF/PSA复合材料分别提高了120.6%和72.6%。400 ℃热老化2 h后,QF/PPA-1复合材料的弯曲强度和层间剪切强度分别为256.5 MPa和17.1 MPa,400 ℃热老化2 h后的力学性能保留率超过70%。(6)QF/PPA复合材料的储能模量随着温度升高明显提高,玻璃化转变温度均高于500 ℃。(7)QF/PPA复合材料在400 ℃高温下长时间热老化后,整体颜色发白,结构完好,层间结合牢固,其中在热老化10 h后,QF/PPA复合材料质量损失率小于3%,低于QF/PSA复合材料。

    结论 

    本文制备了改性硅炔杂化树脂PPA,PPA树脂加工窗口较宽,40 ℃的黏度满足RTM成型工艺的要求,但固化温度高于PSA树脂。PBZ/PAD引入改善了PSA树脂与纤维的界面结合性能,复合材料的力学性能均有大幅提升,室温弯曲强度较QF/PSA复合材料提高了120%以上。PPA树脂和QF/PPA复合材料的耐热性能均非常优异,400 ℃热老化10 h后QF/PPA复合材料质量损失率低于3%,玻璃化转变温度高于500 ℃。

  • 硅炔杂化树脂是一种兼具优异加工性、介电性能、耐热性能、低密度和低吸水率的有机无机杂化树脂,广泛应用于航空航天及核电等军用民用领域。但硅炔杂化树脂固化之后交联密度过高,脆性大,与纤维界面结合性差,导致复合材料力学性能较差,限制了其在各领域的应用。

    本文从硅炔杂化树脂PSA出发,采用含乙炔基苯并噁嗪PBZ和氨基稀释剂PAD共混改性硅炔杂化树脂PSA,得到改性硅炔杂化树脂PPA,并制备石英纤维增强PPA树脂复合材料(QF/PPA)。引入PBZ和PAD后,PPA树脂不仅黏度降低至600 mPa·s且能够保持足够长的时间,满足RTM成型工艺的要求,同时提高了树脂与纤维之间的结合性,改善了复合材料的界面性能,并且PPA树脂中三种组分相互之间可以交联固化,耐热性能优异。因此,PPA树脂可以在40 ℃注射树脂,浸润纤维,注射温度较低,安全环保。所制备的QF/PPA复合材料力学性能明显提高,其中QF/PPA-1常温下弯曲强度为346.2 MPa,层间剪切强度为21.4 MPa,较QF/PSA复合材料分别提高了120.6%和72.6%,400 ℃热处理2 h后的弯曲强度和层间剪切强度分别为256.5 MPa和17.1 MPa,高温力学强度保留率超过70%。

    QF/PPA复合材料的弯曲强度和层间剪切强度

图(10)  /  表(5)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  431
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-05-09
  • 录用日期:  2023-05-10
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回