模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化

周平, 白艳博, 李承高, 董少策, 咸贵军

周平, 白艳博, 李承高, 等. 模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化[J]. 复合材料学报, 2024, 41(1): 323-332. DOI: 10.13801/j.cnki.fhclxb.20230516.003
引用本文: 周平, 白艳博, 李承高, 等. 模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化[J]. 复合材料学报, 2024, 41(1): 323-332. DOI: 10.13801/j.cnki.fhclxb.20230516.003
ZHOU Ping, BAI Yanbo, LI Chenggao, et al. Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-332. DOI: 10.13801/j.cnki.fhclxb.20230516.003
Citation: ZHOU Ping, BAI Yanbo, LI Chenggao, et al. Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-332. DOI: 10.13801/j.cnki.fhclxb.20230516.003

模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化

基金项目: 国家重点研发计划(2022YFB3706501);中央高校基本科研业务费专项资金(HIT. OCEF. 2022032);国家自然科学基金(52008137)
详细信息
    通讯作者:

    咸贵军,博士,教授,博士生导师,研究方向为土木工程结构纤维增强树脂复合材料与结构 E-mail: gjxian@hit.edu.cn

  • 中图分类号: TB332;TU398+.9

Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment

Funds: National Key Research and Development Program of China (2022YFB3706501); Fundamental Research Funds for the Central Universities (HIT. OCEF. 2022032); National Natural Science Foundation of China (52008137)
  • 摘要: 连续玻璃纤维增强聚丙烯(GFRPP)复合材料杆集成了热塑性树脂可多次成型、环境友好、可回收利用和玻璃纤维高应变、低成本等优点,在混凝土结构领域,GFRPP复合材料有望替代钢筋和热固性纤维增强聚合物(FRP)筋成为新型热塑性复合材料。本文采用加速实验研究了模拟海水-海砂混凝土环境下GFRPP杆的水吸收及层间剪切性能长期演化规律与退化机制。研究结果表明:GFRPP杆吸水行为符合Fick定律,21℃、40℃和60℃浸泡温度下GFRPP杆的饱和吸水率分别为0.63%、0.78%和0.81%;经120天21℃、40℃和60℃模拟海水-海砂混凝土孔溶液浸泡后,GFRPP杆层间剪切强度保留率分别为80.5%、72.8%和66.5%。最后,结合SEM和FTIR表征技术,揭示模拟海水-海砂混凝土孔溶液浸泡下GFRPP杆性能退化机制。

     

    Abstract: Glass-fibre reinforced polypropylene (GFRPP) composite rod integrate the advantages of thermoplastic resin multi-molding, environmental friendliness, recyclability, and high strain and low cost of glass fiber. In the field of concrete structures, GFRPP rods are expected to replace steel bars and thermoset fibre reinforced polyer (FRP) bars as a new composite material. In this paper, accelerated experiments were used to study the long-term evolution of water absorption, interlaminar shear properties and degenerative mechanism of GFRPP rod under simulated seawater and sea sand concrete environment. The results show that the water absorption behavior of GFRPP rod conforms to Fick's law, and the saturation water absorption rates of GFRPP rods at immersion temperatures of 21°C, 40°C and 60°C are 0.63%, 0.78% and 0.81%, respectively. After 120 days of immersion in 21°C, 40°C and 60°C simulated seawater sea sand concrete pore solutions, the shear strength retention rates between GFRPP rods are 80.5%, 72.8% and 66.5%. Finally, the performance degradation mechanism of GFRPP rods under simulated seawater-sea sand concrete pore solution immersion was revealed by combining SEM and FTIR characterization techniques.

     

  • 图  1   拉挤成型的玻璃纤维增强聚丙烯(GFRPP)杆(直径6 mm)

    Figure  1.   Pultruded glass fibre reinforced polypropylene (GFRPP) rods (Diameter 6 mm)

    图  2   GFRPP杆短梁剪切测试装置

    Figure  2.   GFRPP rod short beam shear test device

    图  3   不同浸泡温度下GFRPP杆动态热机械分析(DMA)曲线

    Figure  3.   Dynamic thermomechanical analysis (DMA) curves of the GFRPP rods under different immersion temperatures

    图  4   不同浸泡温度下GFRPP杆的吸水曲线

    Figure  4.   Water absorption curves of GFRPP rod at different immersion temperatures

    R2—Goodness of fit

    图  5   GFRPP杆的水吸收扩散系数(Dr)与温度(T)关系曲线

    Figure  5.   Curve of water absorption diffusion coefficient (Dr) vs temperature (T) of GFRPP rod

    图  6   GFRPP杆层间剪切荷载-位移曲线

    Figure  6.   Interlaminar shear load-deformation curves of the GFRPP rods

    图  7   GFRPP杆老化后层间剪切强度(ILSS)测试典型荷载-位移曲线

    Figure  7.   Typical load-displacement curves for interlaminar shear strength (ILSS) test after GFRPP rod aging

    图  8   不同浸泡温度下GFRPP杆层间剪切强度退化比较

    Figure  8.   Comparison of ILSS degradation of GFRPP rods at different immersion temperatures

    图  9   老化后GFRPP杆图片

    Figure  9.   Photos of GFRPP rods after aging

    图  10   老化前GFRPP杆SEM图像

    Figure  10.   SEM images of GFRPP rod before aging

    GF—Glass fiber; PP—Polypropylene

    图  11   120天、60℃模拟溶液GFRPP杆老化SEM 图像

    Figure  11.   SEM images of GFRPP rod aging in 120 days, 60℃ simulated solution

    图  12   不同浸泡时间下GFRPP杆的FTIR图谱

    Figure  12.   FTIR spectra of GFRPP rods at different immersion time

    表  1   GFRPP杆的部分力学性能测试数据[19]

    Table  1   Part mechanical properties data of the GFRPP rods[19]

    Mechanical
    property
    Tensile
    strength/
    MPa
    Tensile
    modulus/
    GPa
    Flexural
    strength/
    MPa
    Flexural
    modulus/
    GPa
    Mean 632.0 26.2 750.0 20.0
    Standard
    deviation
    31.4 2.2 118.0 2.7
    下载: 导出CSV

    表  2   GFRPP杆的水吸收拟合参数

    Table  2   Water absorption fitting parameters of GFRPP rods

    Temperature/℃Dr/(10−13 m·s-1)M/%R2
    21 3.020.630.989
    40 6.730.780.991
    6016.030.810.978
    Notes: Dr—Water absorption diffusion coefficient; M—Saturation water absorption rate.
    下载: 导出CSV
  • [1] 王自柯. FRP筋在模拟海水-海砂混凝土孔溶液浸泡下的耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Zike. Study on the durability performances of fiber reinforced polymer (FRP) bars exposed to simulated seawater and sea sand concrete pore solution[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).

    [2]

    KATANO K, TAKEDA N, ISHIZEKI Y, et al. Properties and application of concrete made with sea water and un-washed sea sand[C]. Proceedings of 3rd International Conference on Sustainable Construction Material and Technologies (SCMT3). Kyoto: Claisse, 2013: 10.

    [3]

    TAREK U M, HIDENORI H, TORU Y. Performance of seawater-mixed concrete in the tidal environment[J]. Cement and Concrete Research,2004,34:593-601. DOI: 10.1016/j.cemconres.2003.09.020

    [4]

    LI C G, YIN X L, LIU Y C, et al. Long-term service evaluation of a pultruded carbon/glass hybrid rod exposed to elevated temperature, hydraulic pressure and fatigue load coupling[J]. International Journal of Fatigue,2020,134:105480. DOI: 10.1016/j.ijfatigue.2020.105480

    [5]

    ZHOU P, LI C G, BAI Y B, et al. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications[J]. Construction and Building Materials,2022,349:128694. DOI: 10.1016/j.conbuildmat.2022.128694

    [6]

    WASIM M, TUAN D N, ABID M. Investigation of long-term corrosion resistance of reinforced concrete structures constructed with various types of concretes in marine and various climate environments[J]. Construction and Building Materials,2020,237:117701. DOI: 10.1016/j.conbuildmat.2019.117701

    [7] 霍瑞丽, 陈登场, 方海, 等. 不同温度环境下轻木夹芯复合材料板弯曲疲劳性能试验[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 344-350.

    HUO Ruili, CHEN Dengchang, FANG Hai, et al. Flexural fatigue test of composite sandwich plate with light wood core in different temperatures[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(3): 344-350(in Chinese).

    [8]

    CHANG Y F, WANG Y L, WANG M F, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials,2021,307:124878. DOI: 10.1016/j.conbuildmat.2021.124878

    [9] 常鑫泉, 汪昕, 刘长源, 等. 预应力FRP板加固RC梁抗弯性能有限元模型可靠性评价[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 318-328.

    CHANG Xinquan, WANG Xin, LIU Changyuan, et al. Reliability evaluation of finite element model for flexural behavior of RC beams reinforced with prestressed FRP laminates[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(3): 318-328(in Chinese).

    [10]

    BENMOKRANE B, MOUSA S, MOHAMED K, et al. Physical, mechanical, and durability characteristics of newly developed thermoplastic GFRP bars for reinforcing concrete structures[J]. Construction and Building Materials,2021,276:122200. DOI: 10.1016/j.conbuildmat.2020.122200

    [11] 吴超强, 王俊, 李帅, 等. 玻璃纤维增强复合材料 钢复合筋混凝土夹芯墙板抗弯性能[J]. 南京工业大学学报(自然科学版), 2021, 43(6): 782-786.

    WU Chaoqiang, WANG Jun, LI Shuai, et al. Bending behavior of concrete sandwich wall panels with GFRP-steel bar connectors[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(6): 782-786(in Chinese).

    [12]

    GAMBLE W L. Flexural strength and design analysis of circular reinforced concrete members with glass fiber-reinforced polymer bars and spirals[J]. ACI Structural Journal, 2019, 116(4): 301-302.

    [13]

    KAMAL A S M, BOULFIZA M. Durability of GFRP rebars in simulated concrete solutions under accelerated aging conditions[J]. Journal of Composites for Construction,2011,15(4):473-481.

    [14]

    WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. DOI: 10.1016/j.corsci.2018.04.002

    [15]

    MOSSAB E, KHALED G, VAN S H. New thermoplastic CFRP bendable rebars for reinforcing structural concrete elements[J]. Composites Part B: Engineering,2013,45(1):1207-1215. DOI: 10.1016/j.compositesb.2012.09.025

    [16]

    SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences,2005,41(2):143-151. DOI: 10.1016/j.paerosci.2005.02.004

    [17]

    ASENSIO M, ESFANDIARI P, MARQUES A, et al. Processing of pre-impregnated thermoplastic towpreg reinforced by continuous glass fibre and recycled PET by pultrusion[J]. Composites Part B: Engineering,2020,200:108365. DOI: 10.1016/j.compositesb.2020.108365

    [18]

    CHEN K, JIA M Y, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials,2019,12(3):463. DOI: 10.3390/ma12030463

    [19]

    ALEXANDER V, KIRILL M, SERGEY G, et al. Effects of the pre-consolidated materials manufacturing method on the mechanical properties of pultruded thermoplastic composites[J]. Polymers,2022,14(11):2246. DOI: 10.3390/polym14112246

    [20]

    MAXIMILIAN V, JOANNA W, SHELLY A, et al. Pultrusion of large thermoplastic composite profiles up to Ø40 mm from glass-fibre/PET commingled yarns[J]. Composites Part B: Engineering,2021,227:109339. DOI: 10.1016/j.compositesb.2021.109339

    [21]

    CURRIER J, FOGSTAD C, WALRATH D, et al. Bond development of thermoplastic FRP shear reinforcement stirrups[C]. The 3rd Materials Engineering Conference. San Diego: ASCE, 1994: 6.

    [22]

    MEHRABI A E, VANDERPOOL D. Mechanical performance of thermoplastic fiber reinforced polymer rebars[Z]. Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-6). Singapore: World Scientific, 2003: 79-88.

    [23]

    MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-503. DOI: 10.1016/j.conbuildmat.2004.04.012

    [24]

    WANG X, PENG Z Q, DING L N, et al. Mechanical and bonding behavior of a bendable fiber-reinforced thermoplastic rebar[J]. Construction and Building Materials,2021,302:124222. DOI: 10.1016/j.conbuildmat.2021.124222

    [25]

    FERRIER E, RABINOVITCH O, MICHEL L. Mechanical behavior of concrete-resin/adhesive-FRP structural assemblies under low and high temperatures[J]. Construction and Building Materials,2016,127:1017-1028. DOI: 10.1016/j.conbuildmat.2015.12.127

    [26]

    American Society for Testing and Materials Committee. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM-D5229/D5229 M—14[S]. West Conshohocken: American Society for Testing and Materials Committee, 2014.

    [27]

    CHEN Y, JULIO F D, INDRAJIT R, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2007,78(1):101-111. DOI: 10.1016/j.compstruct.2005.08.015

    [28]

    YU Y X, LIU S, PAN Y F, et al. Durability of glass fiber-reinforced polymer bars in water and simulated concrete pore solution[J]. Construction and Building Materials,2021,299:123995. DOI: 10.1016/j.conbuildmat.2021.123995

    [29]

    American Society for Testing and Materials Committee. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475—02[S]. West Conshohocken: American Society for Testing and Materials Committee, 2002.

    [30]

    GERARD J, PERRET P, CHABERT B. Study of carbon/epoxy interface (or interphase): Effect of surface treatment of carbon fibers on the dynamic mechanical behavior of carbon/epoxy unidirectional composites[M]. Controlled Interphases in Composite Materials. Cleveland: Springer, 1990: 449-456.

    [31] 杨国威, 梅志远, 李华东, 等. 典型舰用复合材料DMA动态力学性能试验研究[J]. 玻璃钢/复合材料, 2018(6):66-72.

    YANG Guowei, MEI Zhiyuan, LI Huadong, et al. Experimental study on dynamic mechanical properties of typical naval ship composite materials[J]. Fiber Reinforced Plastics/Composites,2018(6):66-72(in Chinese).

    [32] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP 混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-3301.

    LI Chenggao, GUO Rui, WANG Junqi, et al. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-3301(in Chinese).

    [33]

    DENG H, REYNOLDS C T, CABRERA N O, et al. The water absorption behaviour of all-polypropylene composites and its effect on mechanical properties[J]. Composites Part B: Engineering,2010,41(4):268-275. DOI: 10.1016/j.compositesb.2010.02.007

    [34] 王传伟, 肖玮佳, 刘晨光. 傅里叶变换红外光谱法快速测定聚丙烯/聚丁烯釜内合金的组分含量[J]. 青岛科技大学学报(自然科学版), 2022, 43(1):64-70. DOI: 10.16351/j.1672-6987.2022.01.009

    WANG Chuanwei, XIAO Weijia, LIU Chenguang. Rapid determination of polypropylene/polybutene alloy composition by fourier transform infrared spectroscopy[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2022,43(1):64-70(in Chinese). DOI: 10.16351/j.1672-6987.2022.01.009

    [35]

    AZZURRI F, FLORES A, ALFONSE G C, et al. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part II: Correlations to microstructure[J]. Polymer,2003,44(5):1641-1645. DOI: 10.1016/S0032-3861(02)00864-9

  • 期刊类型引用(2)

    1. 李滋阳,王思佳,邓文举. 陶瓷颗粒增强金属基复合材料研究进展. 轻工科技. 2021(04): 41-44 . 百度学术
    2. 陈亚楠,金云学,牛牧野,陈洪美,杜文栋. Ni_3Al(Cr)合金室温干滑动摩擦磨损性能研究. 江苏科技大学学报(自然科学版). 2019(05): 18-26 . 百度学术

    其他类型引用(4)

  • 目的 

    连续玻璃纤维增强聚丙烯(Glass Fibre Reinforced Polypropylene,GFRPP)复合材料杆集成了热塑性树脂可多次成型、环境友好、可回收利用和玻璃纤维高应变、低成本等优点,在混凝土结构领域,GFRPP复合材料有望替代钢筋和热固性FRP筋成为新型热塑性复合材料。本文采用加速实验研究了模拟海水-海砂混凝土环境下GFRPP杆的水吸收及层间剪切性能长期演化规律与退化机理。

    方法 

    加速实验研究了模拟海水-海砂混凝土环境下GFRPP杆的水吸收及层间剪切性能长期演化规律与退化机理。首先,加速实验通过恒温21、40和60℃模拟海水-海砂混凝土孔溶液测定GFRPP杆的吸水性能,采用Fick定律获得GFRPP杆在模拟海水-海砂混凝土孔溶液在上述温度下的水吸收扩散系数与饱和吸水率。测试各工况下GFRPP杆层间剪切强度及热力学性能,并采用SEM和FTIR微观表征技术揭示模拟海水-海砂混凝土孔溶液环境下GFRPP杆长期剪切性能的退化机理。

    结果 

    (1)水吸收测试结果表明,不同温度下的水吸收曲线均随着老化时间的增加,GFRPP杆的吸水率先线性增加,达到饱和状态后基本保持平衡,此规律复合典型的Fick吸水模型。GFRPP杆在60℃下的水吸收扩散速率和饱和吸水率明显高于40℃和21℃,其水吸收扩散速率为40℃和21℃的2.4和5.3倍。(2)GFRPP杆的剪切性能及热力学性能测试表明,GFRPP杆原始(未浸泡)试样层间剪切荷载-变形曲线起始阶段呈线性,且在水平剪切破坏前存在由拉力机压头引起的屈服段。模拟海水-海砂环境下GFRPP杆的层间剪切强度随温度升高和浸泡时间增大而降低。与未浸泡试样相比,经21℃、40℃和60℃模拟海水-海砂浸泡120天后其层间剪切强度保留率分别为80.5%、72.8%和66.5%。(3)热力学测试结果显示GFRPP杆在21℃和60℃浸泡温度下损耗因子分别增加0.053和0.058,增幅分别为1.23、1.83倍。40℃浸泡温度损耗因子增幅呈先增后减趋势,当测试温度高于140℃,40℃与21℃下材料损耗因子几乎相等。(4)微观表征表明,GFRPP杆中存在的微细观孔隙和裂缝是纤维-树脂界面脱粘的根本原因,孔隙、裂缝的发展进一步为环境中氢氧根等离子刻蚀提供了“通道”。

    结论 

    (1)连续玻璃纤维增强聚丙烯复合材料(GFRPP)杆的水吸收行为符合Fick定律,21℃的水吸收扩散速率为3.02(10m/s)、饱和吸水率0.63%,40和60℃水吸收扩散速率、饱和吸水率分别为21℃的2.23、1.24倍和5.31、1.29倍;高温明显加速模拟溶液沿杆体径向的扩散,但对吸水性能影响不显著。(2)21、40和60℃模拟海水-海砂混凝土孔溶液浸泡120天后GFRPP杆层间剪切强度保留率分别为80.5%、72.8%和66.5%,其60℃层间剪切强度保留率比浸泡84天热固性GFRP强度保留率高24%左右,且该优势在40、60℃尤为显著。(3)GFRPP杆体内部微细观孔隙和裂缝在模拟海水-海砂混凝土孔溶液中持续发育、扩展致使玻璃纤维暴露于浸泡溶液并使其发生不同程度的刻蚀是GFRPP杆剪切性能退化的主要原因;纤维-树脂界面脱粘也是层间剪切性能降低的另一重要原因,该结论通过SEM图片和FTIR能谱得以证实。

  • 连续玻璃纤维增强聚丙烯(Glass Fibre Reinforced Polypropylene,GFRPP)复合材料杆集成了热塑性树脂可多次成型、环境友好、可回收利用和玻璃纤维高应变、低成本等优点,在混凝土结构领域,GFRPP复合材料有望替代钢筋和热固性FRP筋成为新型热塑性复合材料。

    本文采用加速试验研究了模拟海水-海砂混凝土环境下GFRPP杆的水吸收及层间剪切性能长期演化规律与退化机理。研究结果表明:GFRPP杆吸水行为符合Fick定律,21、40和60℃浸泡温度下GFRPP杆的饱和吸水率分别为0.63、0.78和0.81%;经120天21、40和60℃模拟海水海砂混凝土孔溶液浸泡后,GFRPP杆层间剪切强度保留率分别为80.5、72.8和66.5%。最后,结合SEM和FTIR表征技术,揭示模拟海水-海砂混凝土孔溶液浸泡下GFRPP杆性能退化机理。

    模拟海水-海砂混凝土孔环境GFRPP杆的层间剪切性能演化:(a)长期吸水性能;(b) SEM表征及FTIR能谱分析;(c)层间剪切强度退化

图(12)  /  表(2)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  415
  • PDF下载量:  44
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-04-27
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回