Influence of interfacial effect of mesoporous materials on heat transport characteristics of mixed nitrate composite phase change materials
-
摘要: 随着化石燃料的快速消耗,能源安全、气候变化问题日益突出,清洁、可持续能源发展技术及储能技术的研究成为热点。本文采用分子动力学模拟和实验研究相结合的方式,展开界面效应对混合硝酸盐复合相变材料(CPCM)热输运特性的影响研究。首先分别采用激光导热仪和差示扫描量热仪测试了CPCM的热导率和比热容。然后使用Materials Studio软件建立共晶状态下不同NaNO3和KNO3配比、不同骨架的CPCM模型,对其热导率和定压比热进行分子动力学模拟计算,通过径向分布函数、界面结合能和体热膨胀系数的变化分析了实验结果的内在机制,进而深入分析了界面效应与混合硝酸盐配比对热物性影响的竞争关系。结果表明:NaNO3与KNO3质量比为4∶6时离子间相互作用弱于其他配比,界面结合能最大,热导率最大。界面结合能的增加对热导率的增强强于离子间相互作用的减弱对热导率的削弱,界面效应在CPCM热导率的变化中占主导地位;CPCM定压比热受离子对比例变化及骨架材料变化的影响,界面结合能及离子间相互作用对定压比热没有明显影响。Abstract: With the rapid consumption of fossil fuels, the issues of energy security and climate change are becoming increasingly prominent. The research of clean and sustainable energy development technology and energy storage technology has become a hot topic. By combining molecular dynamics simulation and experimental research, the influence of interface effects on the heat transport characteristics of mixed nitrate composite phase change materials (CPCM) was studied. Firstly, the thermal conductivity and specific heat capacity of CPCM were measured by laser thermal conductivity meter and differential scanning calorimeter respectively. Then Materials Studio software was used to establish the models of composite phase change materials with different NaNO3 and KNO3 ratios in eutectic states and different skeletons and the molecular dynamics simulation calculation of its thermal conductivity and specific heat at constant pressure was carried out. The internal mechanism of the experimental results was analyzed through the changes in radial distribution function, interface binding energy, and bulk thermal expansion coefficient, and then the competitive relationship between the interface effect and the mixed nitrate ratio on the thermal properties was further analyzed. The results show that when the mass ratio of NaNO3 and KNO3 is 4∶6, the interaction between ions is weaker than other ratios, and the interface binding energy and thermal conductivity are the largest. An increase in interfacial binding energy enhances the thermal conductivity more strongly than a decrease in the interaction between ions weakens the thermal conductivity, the interfacial effect plays a dominant role in the change in the thermal conductivity of CPCM. The specific heat of CPCM at constant pressure is affected by the change of ratio and skeleton material, interfacial binding energy and ionic interaction have no obvious effect on specific heat at constant pressure.
-
随着现代反装甲武器的发展及战场环境的复杂化,装甲系统不断受到更多的威胁,对其战场生存能力提出了更高的要求。陶瓷/高性能纤维树脂基复合材料复合装甲板将高硬度、低体积密度的陶瓷与高韧性的高性能纤维树脂基复合材料背板结合,通过面板陶瓷的破碎和背板高性能纤维树脂基复合材料的变形来耗散弹丸动能,从而实现抵挡穿甲弹侵彻的目标。在穿甲弹的侵彻过程中,陶瓷基于其高硬度特性,侵蚀、碎裂弹丸,并通过自身的破碎吸能耗散弹丸的动能,同时使弹丸的侵彻方向发生偏转。此外,陶瓷的破碎吸能是耗散穿甲弹动能的主要模式[1]。因此,研究在弹道侵彻过程中陶瓷的碎裂行为,分析陶瓷的破坏过程及损伤演化特性,对提高装甲中陶瓷材料的利用效率,推动装甲系统的防护高效化和轻量化发展具有重要意义。
近年来,国内外的科研工作者围绕陶瓷/高性能纤维树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及防护机制开展了大量富有成效的工作,研究发现陶瓷的主要破坏形式为锥形破碎,并伴有不同尺寸的陶瓷碎片和碎粒[2]。Krell等[3]基于弹道冲击试验分析了Al2O3陶瓷的碎裂模式对其物理力学性能及弹道性能的影响,表明陶瓷的碎裂模式决定了弹丸与陶瓷相互作用过程中陶瓷的驻留时间以及磨蚀效率,陶瓷碎裂的裂缝间距小及小尺寸碎片能够增大陶瓷与弹丸间的磨蚀作用,提高陶瓷的弹道性能。Hogan等[4]对弹击后B4C陶瓷碎片的形状和大小进行测量与分析,结果表明B4C陶瓷在弹丸侵彻下发生两种不同的破碎机制:一种为陶瓷结构内部的缺陷导致裂纹发生合并,产生长宽比较高的小尺寸碎片;另一种为在平行于弹丸冲击方向上产生径向及周向裂纹,导致陶瓷发生断裂,产生长宽比为1左右的块状较大尺寸碎片。Yu等[5]基于弹击试验分析了在不同穿燃弹及不同弹击次数下陶瓷的碎片分布研究,表明在0.25~2.25 mm范围内陶瓷碎片呈现高斯分布特征。陶瓷碎片的平均尺寸更小,尺寸分布更集中能够吸收更多的弹丸动能。Madhu等[6]以Al2O3陶瓷/金属复合装甲板为研究对象,分析其在12.7 mm穿甲弹以不同弹速侵彻下发生的主要损伤。随着弹丸速度增加,陶瓷和弹丸会碎裂产生数量更多,尺寸更为细小的碎片,吸收更多的弹丸动能。Chao等[7]以碳化硼陶瓷复合装甲为研究对象,分析在穿甲弹侵彻下B4C陶瓷的微观结构演变,弹丸高速冲击产生的高温高压使陶瓷粒子有能量发生错位,同时伴有层间错位及微孪晶现象。Zhang等[8]通过AUTODYN软件使用SPH方法模拟了弹丸撞击靶板的过程,分析在高速冲击下陶瓷产生的碎片的微观粒子结构及运动特征。表明粒子的空间分布有3种具体形式,即孤立分散粒子、粒子簇和粒子碎片。Liang等[9]使用SPH算法模拟了超高速撞击下碎片的产生过程,计算碎片的长度、宽度、厚度及数量,得到碎片的尺寸特征及分布。表明小尺寸碎片占多数,并随着碎片大小的增加,碎片数量迅速减少。Savio等[10]通过高分辨率电子显微镜观察B4C陶瓷在弹丸以750~1000 m/s的高速撞击下微观结构的变化,由于在冲击载荷期间材料产生各向异性弹性应变,陶瓷晶粒沿一定结晶方向裂开,发生晶体解理,并出现平行于晶面且与晶体解理面相邻的纳米级非晶化现象,影响陶瓷的碎裂特性,从而影响陶瓷的弹道性能。综上,大量学者对陶瓷在弹道侵彻过程中的碎裂行为进行了宏观及微观结构的描述,但对于陶瓷/纤维树脂基复合材料复合装甲板中作为面板结构的陶瓷在穿甲弹侵彻下的渐进碎裂破坏过程以及相应的损伤机制研究较少。
本文以碳化硼(B4C)陶瓷作为防弹面板材料,以UHMWPE层压板作为背板材料,通过真空袋膜压工艺制备B4C/UHMWPE复合装甲板。基于54式12.7 mm穿甲弹侵彻试验,研究复合装甲板在弹速为(488±10) m/s时的抗穿甲弹侵彻性能;基于X射线断层扫描技术和断口形貌,观察弹道侵彻后复合装甲板的内部损伤形貌,分析B4C/UHMWPE复合装甲板在穿甲弹侵彻作用下的响应机制及碳化硼陶瓷破碎行为和特征参数,对优化复合装甲板结构具有重要的指导意义。
1. 实验材料及方法
1.1 原材料
碳化硼陶瓷(B4C),宁夏机械研究院股份有限公司,表面尺寸为300 mm×300 mm。UHMWPE层压板,北京普诺泰新材料科技有限公司,尺寸为300 mm×300 mm,其是由单向(Unidirectional,UD)正交结构的UHMWPE长丝增强热塑性树脂基体,通过铺展、复合、热压工艺制备而成的高性能纤维树脂基复合材料层压板,具有优异的抗弹道侵彻性能。B4C陶瓷和UHMWPE层压板的物理性能分别如表1和表2所示。界面粘结用胶膜,北京普诺泰新材料科技有限公司,单层面密度为(45±5) g/m2;芳纶平纹织物,北京普诺泰新材料科技有限公司,单层面密度为(200±10) g/m2,其放置于碳化硼陶瓷面板的表面,主要作用是为了避免弹道侵彻过程中陶瓷破碎后飞溅而导致的二次伤害。
1.2 复合装甲板的制备
采用真空袋膜压工艺制备B4C/UHMWPE复合装甲板。首先,从背弹面开始依次将UHMWPE层压板、热塑性树脂基胶膜、碳化硼陶瓷、芳纶平纹布的顺序将组分材料进行叠层铺放,如图1(a)所示,表面覆盖真空袋,进行密封;随后,采用真空泵(FY-1 C-N,中国飞越有限公司)抽真空处理,使按顺序铺放好的各组分材料在0.1 MPa恒压状态下固定位置,并将其放置于鼓风烘箱机(DHG-9243 A,中国中杰电热有限公司)中,在 110℃下,保温保压1 h 后开始降温,保压冷却至室温后卸压,取出B4C/UHMWPE复合装甲板。试验用的复合装甲板的结构及其参数如表3所示。
表 1 B4C陶瓷的物理性能Table 1. Physical properties of B4C ceramicBending strength/MPa Elastic modulus/GPa Vickers harness/MPa Fracture toughness/(MPa·m1/2) Volume density/(g·cm−3) 564 393 34652.8 3.47 2.57 表 2 试验用超高分子量聚乙烯(UHMWPE)层压板的物理性能Table 2. Physical properties of ultra-high molecular weight polyethylene (UHMWPE) laminate in experimentVolume density
/(g·cm−3)Tensile strength at break/MPa Young's modulus/GPa Tensile strain at break/% 0.95-1.0 1064.39 42.09 3.10 图 1 (a) 真空袋膜压工艺制备装甲板;(b) 弹道测试装置;(c) 弹道测试后的复合装甲板和弹丸;(d) X 射线计算机断层扫描(CT)扫描设备Figure 1. (a) Preparation of armor plate by vacuum bag film pressing process; (b) Illustration of ballistic test setup; (c) Post-impact composite laminate and bullet; (d) Illustration of X-ray computed tomography (CT)-scan setupAPI-Armor piercing incendiary; IR—Infrared ray; A—Sectional drawing表 3 试验用B4C/UHMWPE复合装甲板结构及其参数Table 3. Structure and specifications of B4C/UHMWPE composite armor plate in experimentTest structure No. Structure design
of armor plateParameters of B4C/UHMWPE laminated composite armor plate Repetition Thickness of B4C/mm Areal density of UHMWPE/(kg·m−2) Areal density of armor plate/(kg·m−2) AVG. STD. AVG. STD. AVG. STD. S1# 11 mm B4C + 10 kg/m2 UHMWPE 11.13 0.13 10.13 0.08 39.21 0.54 9 S2# 12 mm B4C + 8 kg/m2 UHMWPE 12.08 0.10 8.12 0.04 39.56 0.45 5 S3# 11 mm B4C + 12 kg/m2 UHMWPE 11.18 0.02 11.98 0.16 41.77 0.39 4 S4# 12 mm B4C + 10 kg/m2 UHMWPE 12.20 0.01 10.02 0.07 42.18 0.36 7 Notes: AVG.—Average; STD.—Standard deviation. 1.3 弹道测试
参照GJB 4300 A—2012 [11],选用配备12.7 mm穿甲弹的弹道枪对B4C /UHMWPE复合装甲板在着靶弹速为(488±10) m/s范围内进行弹道侵彻实验。弹丸入射角度为0°,射距设置为100 m,并装甲板悬空固定。每块装甲板测试一发弹,并且弹着点位置距离装甲板边缘75 cm及以上为有效射击。弹道实验所用设备如图1(b)所示,测试后复合装甲板表面形貌及弹丸碎片如图1(c)所示。
1.4 损伤形貌表征
采用工业级X射线计算机断层扫描设备(Diondo d5,德国Diondo GmbH有限公司)对弹道侵彻后装甲板进行CT扫描分析,见图1(d)。
2. 结果与分析
2.1 组分结构对B4C/UHMWPE复合装甲板的抗穿甲弹侵彻性能的影响
本文采用54式12.7 mm穿甲弹以弹速(488±10) m/s对4种结构的B4C/UHMWPE复合装甲板进行单发弹道试验,选用有效防护百分数作为复合装甲板的抗12.7 mm穿甲弹侵彻性能的衡量指标。试验分别研究了相同冲击速度时不同陶瓷厚度和不同UHMWPE层压板面密度对B4C/UHMWPE复合装甲板的抗穿甲弹侵彻性能的影响。
由表3可知,结构S1#与S2#、结构S3#与S4#都为相近装甲板面密度下组分材料比重对复合装甲板防弹性能影响的对比试验组;结构S1#与S3#、结构S2#与S4#都为相同B4C厚度时UHMWPE层压板面密度增量对复合装甲板防弹性能的影响;结构S1#与S4#为相同UHMWPE层压板面密度时B4C陶瓷厚度增量对复合装甲板防弹性能的影响。表4为B4C/UHMWPE复合装甲板抵挡54式12.7 mm穿甲弹侵彻试验的结果。由表4可知,弹丸的侵彻速度稳定在合理的范围内及弹着点距装甲板边缘的距离均满足测试标准GJB 59.18—1988[11]要求,保证了弹道测试结果的横向可对比性;此外,每种结构的有效重复射击试验试样均在4块及以上,足够的样本数量保证试验结果具有一定的可参考性。此外,由表4还可知,对于相同结构的B4C/UHMWPE复合装甲板,其抗穿甲弹侵彻性能存在较为明显的差异,其主要是由于目前国内B4C防弹陶瓷性能的不稳定性导致的,因而本文采用有效防护百分比作为B4C /UHMWPE复合装甲板抗弹道侵彻性能的衡量指标。
表 4 B4C /UHMWPE复合装甲板抵挡54式12.7 mm穿甲弹侵彻试验结果Table 4. Test results of B4C /UHMWPE composite armor plate resisting the penetration of 54 Type 12.7 mm armor piercing projectileNo. of test structure Repeat sample No. Impact velocity/(m·s−1) Post-impact state Location of impact point Bulge length/mm Distance from top/mm Distance from left/mm S1# S1#-1 495 NP 130 200 39 S1#-2 497 CP 150 160 — S1#-3 489 NP 145 155 60 S1#-4 492 CP 160 175 — S1#-5 491 CP 215 150 — S1#-6 493 CP 105 155 — S1#-7 493 NP 115 135 95 S1#-8 483 CP 175 180 — S1#-9 497 CP 160 160 — S2# S2#-1 495 CP 165 195 — S2#-2 493 CP 210 170 — S2#-3 491 CP 180 215 — S2#-4 489 CP 155 145 — S2#-5 493 NP 145 150 79 S3# S3#-1 489 CP 115 150 — S3#-2 498 NP 110 120 93 S3#-3 491 NP 210 190 68 S3#-4 483 NP 175 240 66 S4# S4#-1 496 NP 120 140 55 S4#-2 490 CP 150 165 — S4#-3 494 NP 135 150 30 S4#-4 489 CP 155 160 — S4#-5 485 CP 200 115 — S4#-6 486 CP 160 165 — S4#-7 491 NP 150 170 40 Notes: NP—Non-perforating; CP—Complete perforating. 图2是不同结构的B4C/UHMWPE复合装甲板在54式12.7 mm穿甲弹以弹速(488±10) m/s侵彻时的有效防护百分比。可知,结构S3#的复合装甲板在抗12.7 mm穿甲弹侵彻时具有最高的有效防护概率,即有75%的概率能够有效阻断12.7 mm穿甲弹的侵彻。分别对比结构S1#与S2#、结构S3#与S4#可知,在相近面密度的情况下,当降低1 mm厚B4C陶瓷并增加相近面密度的UHMWPE层压板时,复合装甲板的有效防护概率分别提升了13.33%、32.14%,并且随着复合装甲板面密度的增加,这种提升效应更加显著。这主要是由于UHMWPE层压板面密度的增加不仅提升了UHMWPE层压板的防护效率,同时其还增加了UHMWPE层压板对B4C陶瓷的机械支撑作用[12-13],即背板支撑强化效应。背板支撑强化效应间接地提升了B4C陶瓷的防护效率,在背板和陶瓷防护效率都提升的耦合作用下,复合装甲板防弹性能提升幅度覆盖住了陶瓷厚度下降带来的弱化效应,宏观表现为复合装甲板的抗穿甲弹侵彻性能显著提升。分别对比结构S1#与S3#、结构S2#与S4#可知,当B4C陶瓷厚度相同,增加UHMWPE层压板的面密度时,可提升复合装甲板的有效防护概率,并且结构S3#比S1#、结构S4#比S2#分别提升了41.67%、22.86%,这表明复合装甲板中原UHMWPE层压板组分面密度占比越大,这种提升效果越显著;此外,对比结构S1#和S4#可知,当背板面密度相同,增加B4C陶瓷厚度时,复合装甲板的防护概率提升了9.53%,显著低于陶瓷厚度不变、UHMWPE层压板面密度增加时的复合装甲板防护效率提升幅度(41.67%和22.86%)。这都是由于背板支撑的强化效应导致的。因此,在以提升B4C /UHMWPE复合装甲板的抗12.7 mm穿甲弹侵彻性能为目标的背景下,对复合装甲板结构进行优化设计时,在复合装甲板面密度不变的情况下,可适当降低面板B4C陶瓷的厚度占比、提升背板UHMWPE层压板的面密度占比;在复合装甲板面密度可以适当增加的情况下,优先增加UHMWPE层压板的面密度;在复合装甲板面密度可以适当减少的情况下,优先降低B4C陶瓷的厚度。
2.2 B4C/UHMWPE复合装甲板在穿甲弹侵彻下的响应机制
图3是弹道侵彻后B4C/UHMWPE复合装甲板的损伤形貌。图3(a)是基于X射线计算机断层扫描技术获得的弹道侵彻后B4C/UHMWPE复合装甲板沿弹孔直径方向的横截面损伤形貌。图3(b)和图3(c)是弹着点处B4C/UHMWPE复合装甲板的宏-微观尺度的损伤形貌。可知,在穿甲弹侵彻作用下,B4C/UHMWPE复合装甲板的损伤模式主要包括B4C陶瓷板的区域性破碎和粉化,UHMWPE层压板的多层面分层破坏、剪切破坏和面外塑性变形。其中,UHMWPE层压板的多层面分层破坏主要是由于单向正交结构的层压板承受面内拉伸作用导致的[14-15]。图4(a)是弹着点处B4C陶瓷板内部的自由面损伤形貌,包括B4C陶瓷板背面的损伤形貌(图4(a1))及与陶瓷板背面分离并贴附于UHMWPE层压板的超前碎裂区的B4C陶瓷破碎形貌(图4(a2))。可知,B4C陶瓷的面内主要损伤区域呈现圆形,并且裂纹主要沿径向分布,圆形的面内损伤区域是陶瓷各向同性的特性决定的,径向分布的裂纹主要是弹丸在侵彻过程中对B4C陶瓷板的纵向挤压导致的。对比图4(a1)和图4(a2)可知,尽管这两份部分陶瓷表面损伤形貌都来源于自由面,但是径向破碎程度的巨大差异表明这两部分陶瓷并非同时承受弹丸的侵彻作用。
图 3 弹道侵彻后B4C/UHMWPE复合装甲板的损伤形貌:(a) 基于CT扫描的沿弹孔直径方向的复合装甲板横截面剖面形貌(S4#-3);(b) 弹着点处装甲板的宏观尺度的损伤形貌;((c1)~(c4)) 弹着点处装甲板的微观尺度的损伤形貌Figure 3. Damage morphologies of post-impact B4C/UHMWPE composite armor plate: (a) Cross section morphology of composite armor plate along bullet hole diameter based on CT scanning (S4#-3); (b) Macroscopic damage morphology of armor plate at the impact point; ((c1)-(c4)) Micro scale damage morphology of armor plate at the impact point图 4 (a1) 弹着点处B4C陶瓷板背面的破碎形貌(S4#-5);(a2) 与B4C陶瓷板背面分离并贴附于UHMWPE层压板上的超前碎裂区陶瓷破碎形貌(S4#-5);(b) 穿甲弹侵彻作用下B4C陶瓷响应区域分类示意图Figure 4. (a1) Fracture morphology of back face of B4C ceramic plate at impact point (S4#-5); (a2) Fracture morphology of ceramic in the advanced fragmentation zone separated from B4C ceramic plate back face and attached to the UHMWPE laminate (S4#-5); (b) Schematic diagram of response area classification of B4C ceramic under penetration of piercing projectile结合图3(a)和图4(a1)、4(a2)可知,B4C/UHMWPE复合装甲板中B4C陶瓷破碎区域为双圆台状。并且,根据B4C陶瓷的破碎程度,穿甲弹侵彻作用下的B4C陶瓷响应区域可分为3个部分,如图4(b)所示。第I部分为侵彻过程中B4C陶瓷的超前碎裂区[16],主要对应于图4(a2)所示的陶瓷碎片。在弹丸达到这一区域前,在冲击压缩波、反射回来的冲击拉伸波、弹丸向下运动的压缩载荷的耦合作用下,如图5所示,这一区域圆台状的陶瓷块与陶瓷板之间已经产生了周向分布的自由面,自由面形貌如图4(a1)、4(a2)所示,随后从陶瓷板上分离开来并贴附在UHMWPE层压板上(如图3(b)所示)。第II部分为弹道侵彻后剩余的B4C陶瓷板区,对应于图4(a1)所示的陶瓷板。由图4(a1)、4(a2)可知,第I部分B4C陶瓷超前碎裂区径向裂纹数是第II部分陶瓷板的径向裂纹数目的2.36倍,即第II部分陶瓷板的碎裂程度远小于超前碎裂区。这主要是由于第I部分B4C陶瓷的超前碎裂区是在UHMWPE层压板的强支撑作用下与弹丸作用的,而自由面的存在导致第II部分陶瓷板在弹着点区域处于近乎无支撑的状态,因而第I部分B4C陶瓷的超前碎裂区比第II部分陶瓷板具有更密集分布的径向裂纹。第III部分是弹丸正下方的碎片-完全粉化区,其主要对应于弹道侵彻后复合装甲板内腔中的陶瓷碎片及UHMWPE层压板上微纳米尺度的陶瓷粉末。第III部分陶瓷在弹道侵彻过程中承受弹丸直接碾压作用,其是弹丸破碎、侵彻方向偏转的主要原因。此外,这区域内的微纳米级别的B4C碎片在弹丸携带的动能作用下,跟随弹丸一起侵彻UHMWPE层压板,如图3(c4)所示。
综上,在穿甲弹的侵彻过程中,B4C/UHMWPE复合装甲板中的B4C陶瓷响应行为包括B4C陶瓷区域性的碎裂、粉化过程及B4C陶瓷的碎片和弹丸一起侵彻UHMWPE层压板。在弹丸和陶瓷碎片的侵彻作用下,UHMWPE层压板的响应行为包括面外塑性变形、多层面的分层破坏、绝热剪切破坏过程[17-18]。因此,B4C/UHMWPE复合装甲板在穿甲弹侵彻下的响应过程可分为3个阶段,依次为冲击波传播过程及诱导陶瓷内自由面生成、B4C陶瓷的破碎过程、UHMWPE层压板的压缩-剪切-拉伸的耦合过程。
图6是B4C/UHMWPE复合装甲板在穿甲弹侵彻作用下的响应机制示意图。在第一阶段中,如图6(a)所示,由于冲击波在B4C陶瓷和UHMWPE层压板中的传播速度远大于穿甲弹的侵彻速度,因而在穿甲弹尚未对B4C陶瓷形成有效物理压缩作用前,冲击波已经在复合装甲板内经历了多次反射、透射,冲击压缩波在装甲板的自由端面反射为冲击拉伸波。在冲击拉伸波的作用下,在弹丸的正下方、靠近B4C陶瓷的背面区域产生锥面分布的周向裂纹并扩展、连接成自由面,形成圆台状的B4C陶瓷超前破碎区,如图6(b1)所示,进入第二阶段,在弹丸的物理前进作用下,B4C陶瓷的超前破碎区在自由面处与陶瓷板分离并贴附于UHMWPE层压板上。与此同时,在弹丸的纵向挤压作用下,B4C陶瓷板产生以弹着点为圆心的径向裂纹;在弹丸的横向压缩作用下,弹丸正下方的陶瓷被碾碎成碎片和粉末,这些碎片和粉末在弹丸动能的加速下,跟随弹丸一起侵彻下方的陶瓷或UHMWPE层压板;此外,基于陶瓷的高硬度特性,弹丸开始破碎。如图6(b2)所示,随着弹丸的持续前进,弹丸依次压缩B4C陶瓷的超前破碎区和UHMWPE层压板,B4C陶瓷的超前破碎区和UHMWPE层压板发生面外弯曲变形。B4C陶瓷的超前破碎区的径向裂纹归咎于弹丸的纵向压缩作用,其周向裂纹是由于超前破碎区跟随UHMWPE层压板的面外弯曲变形导致的,当弹丸穿透B4C陶瓷层后,弹丸与获得加速度的陶瓷碎片一同侵彻UHMWPE层压板[19],UHMWPE层压板在产生面外弯曲塑性变形的同时,其在弹着点处被弹丸边缘或陶瓷碎片剪切破坏,如图6(b3)所示。在弹丸的冲击载荷作用下,以弹着点为起始段,UHMWPE层压板边缘为末端,UHMWPE层压板边发生面内拉伸变形,基于单向正交结构的层间无交织特性,UHMWPE层压板内出现多层面的分层破坏,如图6(b4)所示。值得注意的是,UHMWPE层压板主要通过面内的拉伸变形消耗弹丸的剩余动能[20-23]。弹丸是逐层侵彻UHMWPE层压板的,当弹丸剩余动能消耗完时,停止侵彻,如图6(b5)所示,即复合装甲板有效抵挡穿甲弹的侵彻作用;如果弹丸还有多余动能,继续侵彻下一层,直至穿透UHMWPE层压板,如图6(b6)所示,即复合装甲板未能有效抵挡穿甲弹的侵彻作用。
图 6 穿甲弹侵彻作用下B4C/UHMWPE复合装甲板的响应机制:(a) 冲击波的传播过程;(b) 弹道侵彻过程:(b1) 陶瓷表面产生裂纹并形成超前破坏区;(b2) 超前破碎区与陶瓷分离并发生碎裂;(b3) 弹丸开始侵彻背板;(b4) 弹丸动能耗尽;(b5) 装甲有效抵挡弹丸侵彻;(b6) 装甲被弹丸穿透Figure 6. Response mechanism of B4C/UHMWPE composite armor plate under armor piercing projectile: (a) Process of shock wave propagation; (b) Ballistic penetration process: (b1) Cracks appear on ceramic surface and advanced fragmentation zone is formed; (b2) Advanced fragmentation zone separates from the ceramic and breaks; (b3) Projectile began to penetrate the backplane; (b4) Kinetic energy of projectile is exhausted; (b5) Armor effectively resists projectile penetration; (b6) Armor was penetrated by the projectileV—Velocity of projectile2.3 穿甲弹侵彻后B4C陶瓷的自由面锥角
B4C/UHMWPE复合装甲板在抵挡穿甲弹侵彻过程中,其陶瓷组分主要通过陶瓷破碎和裂纹扩展来耗散弹丸的动能。由陶瓷碎裂形貌(图3(b)和图4(a1)、图4(a2))可知,在B4C/UHMWPE复合装甲板抵挡12.7 mm穿甲弹侵彻过程中,B4C陶瓷的破碎主要集中在超前破碎区(第I部分响应区域)和弹丸正下方的碎片-完全粉化区(第III部分响应区域),因此,B4C陶瓷的第I部分响应区域和第III部分响应区域是其在穿甲弹侵彻过程中耗散弹丸动能的主要响应区域。由图4(b)可知,自由面锥角与超前破碎区和弹丸正下方的碎片-完全粉化区都存在相关性,因此,本文采用自由面锥角作为B4C陶瓷在穿甲弹侵彻下的响应特征参数,并分析其与B4C/UHMWPE复合装甲板的抗穿甲弹侵彻性能的关系。
图7(a)是弹道侵彻后B4C陶瓷自由面锥角的测量示意图,图7(b)是自由面锥角的实测值,其通过Image J软件测量。由图7(b)可知,对于不同结构的B4C/UHMWPE复合装甲板,其在完全穿透或未完全穿透状态下的自由面锥角都几乎相等(峰值偏差在1o以内),即自由面锥角不受复合装甲板中B4C陶瓷厚度或UHMWPE层压板厚度的影响。此外,对于试验用的4种结构,未完全穿透时的自由面锥角都大于完全贯穿时的自由面锥角,这是由于自由面锥角增大,穿甲弹侵彻下B4C陶瓷的第I部分响应区域和第III部分响应区域的范围增大,从而在破碎过程中消耗更多的弹丸动能,因而有更大概率能够有效抵挡穿甲弹的侵彻。
由上可知,对于穿甲弹侵彻后的B4C/UHMWPE复合装甲板,B4C陶瓷内的自由面锥角与复合装甲板的结构(陶瓷厚度、UHMWPE层压板厚度)无显著关系,但与复合装甲板是否有效抵挡穿甲弹侵彻有明显正相关性,这表明自由面锥角可以用来作为横向指标来单纯评估复合装甲板中B4C陶瓷的抗穿甲弹侵彻性能。
3. 结 论
(1) 在以提升B4C/超高分子量聚乙烯(UHMWPE)复合装甲板的抗12.7 mm穿甲弹侵彻性能为目标的背景下,对复合装甲板结构进行优化设计时,在复合装甲板面密度不变的情况下,可适当降低面板B4C陶瓷的厚度占比、提升背板UHMWPE层压板的面密度占比;在复合装甲板面密度可以适当增加的情况下,优先增加UHMWPE层压板的面密度;在复合装甲板面密度可以适当减少的情况下,优先降低B4C陶瓷的厚度。
(2) 在穿甲弹侵彻作用下,B4C陶瓷的破碎区域呈现双圆台状。根据陶瓷破碎程度,其弹道响应区域可分为3部分。第I部分为位于弹着点下方、靠近陶瓷板背面的陶瓷超前破碎区域,第II部分为弹道侵彻后剩余的B4C陶瓷板,第III部分为弹丸正下方的碎片-完全粉化区。第I部分和第II部分主要的宏观裂纹形貌为径向裂纹,其是由于弹丸在侵彻过程中的纵向压缩导致的;第III部分的主要宏观形貌为陶瓷碎片和粉化。此外,第I部分的陶瓷超前破碎区域还存在周向裂纹,其主要是由于超前破碎区在弹丸侵彻作用下随UHMWPE层压板的面外弯曲变形导致的。
(3) B4C/UHMWPE复合装甲板在穿甲弹侵彻下的响应过程可分为3个阶段,分别为冲击波传播过程及诱导陶瓷内自由面生成、B4C陶瓷的破碎过程、UHMWPE层压板的压缩-剪切-拉伸的耦合过程。
(4) 对穿甲弹侵彻后的B4C/UHMWPE复合装甲板,B4C陶瓷内的自由面锥角与复合装甲板的结构(陶瓷厚度、UHMWPE层压板厚度)无显著关系,但与复合装甲板是否有效抵挡穿甲弹侵彻有明显正相关性,这表明自由面锥角可以作为横向指标来单纯评估复合装甲板中B4C陶瓷的抗穿甲弹侵彻性能。
-
图 15 不同骨架下混合硝酸盐CPCM定压比热:(a) 熔化前SiO2骨架;(b) 熔化后SiO2骨架;(c) 熔化前陶瓷骨架;(d) 熔化后陶瓷骨架;(e) 熔化前Al2O3骨架;(f) 熔化后Al2O3骨架
Figure 15. Specific heat at constant pressure of mixed nitrate CPCM under different skeletons: (a) SiO2 skeleton before melting; (b) SiO2 skeleton after melting; (c) Ceramic skeleton before melting; (d) Ceramic skeleton after melting; (e) Al2O3 skeleton before melting; (f) Al2O3 skeleton after melting
表 1 材料信息
Table 1 Material information
Materials Manufacturers Purity KNO3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity NaNO3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity Al2O3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity Al(OH)3 Tianjin Damao Chemical
Reagent FactoryAnalytical purity Diatomite Tianjin Damao Chemical
Reagent FactoryAnalytical purity Citrin Shanghai AIbi Chemical
Reagent CO., LTD.99.5% Gelatin Tianjin Bodi Chemical CO., LTD. 99.5% SBA-15 Beijing Solaibao Technology
CO., LTD.100%Si Anhydrous ethanol Sinopharm Chemical Reagent
CO., LTD.99.5% Note: SBA-15—SiO2 molecular sieve. 表 2 混合硝酸盐复合相变材料离子数
Table 2 Ions of mixed nitrate composite phase change material
CPCM Nitrate ions Skeleton molecule Scale/nm Na+ K+ NO3− Al2O3 SiO2 [w(NaNO3∶KNO3)=6∶4]/Al2O3 180 101 281 287 0 6-7 [w(NaNO3∶KNO3)=6∶4]/SiO2 180 101 281 0 473 6-7 [w(NaNO3∶KNO3)=6∶4]/ceramic 180 101 281 77 363 6-7 [w(NaNO3∶KNO3)=5∶5]/Al2O3 151 127 278 294 0 6-7 [w(NaNO3∶KNO3)=5∶5]/SiO2 151 127 278 0 473 6-7 [w(NaNO3∶KNO3)=5∶5]/ceramic 151 127 278 77 363 6-7 [w(NaNO3∶KNO3)=4∶6]/Al2O3 126 159 285 308 0 6-7 [w(NaNO3∶KNO3)=4∶6]/SiO2 126 159 285 0 495 6-7 [w(NaNO3∶KNO3)=4∶6]/ceramic 126 159 285 77 363 6-7 [w(NaNO3∶KNO3)=9∶1]/Al2O3 265 25 290 287 0 6-7 [w(NaNO3∶KNO3)=9∶1]/SiO2 265 25 290 0 462 6-7 [w(NaNO3∶KNO3)=9∶1]/ceramic 265 25 290 70 330 6-7 表 3 混合硝酸盐CPCM熔化前后比热
Table 3 Specific heat of mixed nitrate CPCM before and after melting
CPCM Specific heat
of solid state/
(J·g−1·K−1)Specific heat
of liquid/
(J·g−1·K−1)[w(NaNO3∶KNO3)=6∶4]/Al2O3 1.15568 1.4600 [w(NaNO3∶KNO3)=6∶4]/SiO2 0.97800 1.2940 [w(NaNO3∶KNO3)=6∶4]/ceramic 1.09350 1.3320 [w(NaNO3∶KNO3)=5∶5]/Al2O3 1.14009 1.4200 [w(NaNO3∶KNO3)=5∶5]/SiO2 0.96400 1.2680 [w(NaNO3∶KNO3)=5∶5]/ceramic 1.04930 1.3225 [w(NaNO3∶KNO3)=4∶6]/Al2O3 1.10329 1.3510 [w(NaNO3∶KNO3)=4∶6]/SiO2 0.93000 1.2040 [w(NaNO3∶KNO3)=4∶6]/ceramic 1.01350 1.2865 [w(NaNO3∶KNO3)=9∶1]/Al2O3 1.07772 1.3150 [w(NaNO3∶KNO3)=9∶1]/SiO2 0.92200 1.1360 [w(NaNO3∶KNO3)=9∶1]/ceramic 0.99250 1.2535 -
[1] ZHANG S, LI Z Y, YAO Y P, et al. Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material[J]. Nano Energy,2022,100:107476. DOI: 10.1016/j.nanoen.2022.107476
[2] FANG G H, SUN P B, ZHAO M S, et al. Experimental and numerical simulation of paraffin-based ternary composite phase change material used in solar energy system[J]. Applied Thermal Engineering,2022,214:118618. DOI: 10.1016/j.applthermaleng.2022.118618
[3] ZHOU B, ZHEN L P, YANG Y J, et al. Novel composite phase change material of high heat storage and photothermal conversion ability[J]. Journal of Energy Storage,2022,49:104101. DOI: 10.1016/j.est.2022.104101
[4] LIU Y L, ZHEN J L, DENG Y, et al. Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review[J]. Journal of Energy Storage, 2021, 44: 103637.
[5] BONIFACE D M, GABRIEL Z, EMILIANO B, et al. Trends and future perspectives on the integration of phase change materials in heat exchangers[J]. Journal of Energy Storage,2021,38:102544. DOI: 10.1016/j.est.2021.102544
[6] 吴玉庭, 王涛, 马重芳, 等. 二元混合硝酸盐的配制及性能[J]. 太阳能学报, 2012, 33(1):148-152. DOI: 10.3969/j.issn.0254-0096.2012.01.025 WU Yuting, WANG Tao, MA Zhongfang, et al. Preparation and properties of binary mixed nitrate[J]. Acta Energiae Solaris Sinica,2012,33(1):148-152(in Chinese). DOI: 10.3969/j.issn.0254-0096.2012.01.025
[7] DING X P, HUANG J W, ZHU F Y, et al. Study on energy storage performance of thermally enhanced composite phase change material of calcium nitrate tetrahydrate[J]. Journal of Energy Storage, 2022, 52: 104879.
[8] LI Q, WEI W Z, LI Y Y, et al. Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage[J]. Energy Reports,2022,8:1528-1537. DOI: 10.1016/j.egyr.2021.12.054
[9] ALEXANDER B, BRAUN M, BAUER T. Phase diagram, thermodynamic properties and long-term isothermal stability of quaternary molten nitrate salts for thermal energy storage[J]. Solar Energy,2022,231:1061-1071. DOI: 10.1016/j.solener.2021.12.020
[10] CHEN Q, WANG H, GAO H B, et al. Effects of porous silicon carbide supports prepared from pyrolyzed precursors on the thermal conductivity and energy storage properties of paraffin-based composite phase change materials[J]. Journal of Energy Storage, 2022, 56: 106046.
[11] ZHAO X G, TANG Y L, XIE W M, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials,2023,362:129768. DOI: 10.1016/j.conbuildmat.2022.129768
[12] SANG L X, XU Y W. Form stable binary chlorides/expanded graphite composite material with enhanced compressive strength for high temperature thermal storage[J]. Journal of Energy Storage,2020,31:101611. DOI: 10.1016/j.est.2020.101611
[13] LI Y, YUE G, YU Y M, et al. Preparation and thermal characterization of LiNO3-NaNO3-KCl ternary mixture and LiNO3-NaNO3-KCl/EG composites[J]. Energy,2020,196:117067. DOI: 10.1016/j.energy.2020.117067
[14] ZHANG G H, SUN Y, WU C X, et al. Low-cost and highly thermally conductive lauric acid-paraffin-expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery[J]. Energy Reports,2023,9:2538-2547. DOI: 10.1016/j.egyr.2023.01.102
[15] GAO J, HAN G J, SONG J Z, et al. Customizing 3D thermally conductive skeleton by 1D aramid nanofiber/2D graphene for high-performance phase change composites with excellent solar-to-thermal conversion ability[J]. Materials Today Physics,2022,27:100811. DOI: 10.1016/j.mtphys.2022.100811
[16] JIANG F, LING X, ZHANG L L, et al. Improved thermal conductivity of form-stable NaNO3: Using the skeleton of porous ceramic modified by SiC[J]. Solar Energy Materials and Solar Cells,2021,231:111310. DOI: 10.1016/j.solmat.2021.111310
[17] WANG Y C, ZHANG L Y, TAO S Y, et al. Phase change in modified hierarchically porous monolith: An extra energy increase[J]. Microporous and Mesoporous Materials,2014,193:69-76. DOI: 10.1016/j.micromeso.2014.03.007
[18] HUANG X Y, LIU Z P, XIA W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels[J]. Journal of Materials Chemistry A,2015,3(5):1935-1940. DOI: 10.1039/C4TA06735E
[19] DUEMMLER K, WOODS M, KARLSSON T, et al. An ab initio molecular dynamics investigation of the thermophysical properties of molten NaCl-MgCl2[J]. Journal of Nuclear Materials,2022,570:153916. DOI: 10.1016/j.jnucmat.2022.153916
[20] LU J F, YANG S F, RONG Z Z, et al. Thermal properties of KCl-MgCl2 eutectic salt for high-temperature heat transfer and thermal storage system[J]. Solar Energy Materials and Solar Cells,2021,228:111130. DOI: 10.1016/j.solmat.2021.111130
[21] VAKA M, WALVEKAR R, KHALID M, et al. Low-melting-temperature binary molten nitrate salt mixtures for solar energy storage[J]. Journal of Thermal Analysis and Calorimetry,2020,141(6):2657-2664. DOI: 10.1007/s10973-020-09683-y
[22] WU J, NI H O, LIANG W S, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science,2019,170:109051. DOI: 10.1016/j.commatsci.2019.05.049
[23] OUYANG Y X, QIU L, BAI Y Y, et al. Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification[J]. iScience,2022,25(8):104825. DOI: 10.1016/j.isci.2022.104825
[24] YU Z P, FENG D L, FENG Y H, et al. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2022,152:106703. DOI: 10.1016/j.compositesa.2021.106703
[25] FENG D L, FENG Y H, LI P, et al. Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance[J]. Microporous and Mesoporous Materials,2020,292:109756. DOI: 10.1016/j.micromeso.2019.109756
[26] REN N, WU Y T, MA C F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar Energy Materials and Solar Cells,2014,127:6-13. DOI: 10.1016/j.solmat.2014.03.056
[27] XIAO S K, LIU X R, CHANG Z X, et al. Si-HfO2 composite powders fabricated by freeze drying for bond layer of environmental barrier coatings[J]. Ceramics International,2022,48(13):19266-19273. DOI: 10.1016/j.ceramint.2022.03.219
[28] FENG L L, ZHAO W, ZHENG J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41)[J]. Solar Energy Materials and Solar Cells,2011,95(12):3550-3556. DOI: 10.1016/j.solmat.2011.08.020
[29] YANG B, LIU J M, SONG Y W, et al. Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)[J]. Renewable Energy,2020,146:1867-1878. DOI: 10.1016/j.renene.2019.08.052
[30] 官云许, 杨启容, 何卓亚, 等. 储能用多孔铝硅酸盐陶瓷基热物性的研究[J]. 功能材料, 2021, 52(2):2153-2160. GUAN Yunxu, YANG Qirong, HE Zhuoya, et al. Study on thermal properties of porous aluminosilicate ceramics for energy storage[J]. Journal of Functional Materials,2021,52(2):2153-2160(in Chinese).
[31] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells,2019,200:109897. DOI: 10.1016/j.solmat.2019.04.019
[32] KARASAWA N, GODDARD W. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules,1992,25-26:7268-7281.
[33] PAN G C, DING J, WANG W, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer,2016,103:417-427. DOI: 10.1016/j.ijheatmasstransfer.2016.07.042
[34] HU Y H, SINNOTT S B. Constant temperature molecular dynamics simulations of energetic particle-solid collisions: Comparison of temperature control methods[J]. Journal of Computational Physics,2004,200(1):251-266. DOI: 10.1016/j.jcp.2004.03.019
[35] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics,1984,81:3684-3690. DOI: 10.1063/1.448118
[36] GONG X F, YANG Q R, YAO E R, et al. Molecular dynamics study on the thermal conductivity of graphene and pentaerythritol phase change composites[J]. Journal of Functional Materials,2020,51(1):1214-1220. DOI: 10.3969/j.issn.1001-9731.2020.01.036
[37] YANG H A, CAO B Y. Effects and correction of angular momentum non-conservation in RNEMD for calculating thermal conductivity[J]. Computational Materials Science,2020,183:109753. DOI: 10.1016/j.commatsci.2020.109753
[38] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B,1986,33(12):7983-7991. DOI: 10.1103/PhysRevB.33.7983
[39] 何卓亚, 杨启容, 李昭莹, 等. 介孔尺度及结构对混合硝酸盐热输运特性的影响[J]. 物理学报, 2022, 71(3):65-77. HE Zhuoya, YANG Qirong, LI Zhaoying, et al. Effects of mesoporous scale and structure on heat transport characteristics of mixed nitrate[J]. Acta Physica Sinica,2022,71(3):65-77(in Chinese).
[40] 毛蕊, 杨启容, 李昭莹, 等. 介孔内太阳盐凝固特性的尺度效应和结构效应分析[J]. 物理学报, 2022, 71(11):71-82. MAO Rui, YANG Qirong, LI Zhaoying, et al. Scale effect and structure effect analysis of solar salt solidification characteristics in mesoporous area[J]. Acta Physica Sinica,2022,71(11):71-82(in Chinese).
[41] XIAO J B, HUANG J, ZHU P P, et al. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material[J]. Thermochimica Acta,2014,587:52-58. DOI: 10.1016/j.tca.2014.04.021
[42] 宋文兵, 鹿院卫, 陈晓彤, 等. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728. SONG Wenbing, LU Yuanwei, CHEN Xiaotong, et al. Preparation and thermal properties of chloride/ceramic shaped composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728(in Chinese).
[43] RONG Z Z, DING J, WANG W L, et al. Ab-initio molecular dynamics calculation on microstructures and thermophysical properties of NaCl-CaCl2-MgCl2 for concentrating solar power[J]. Solar Energy Materials and Solar Cells,2020,216:110696. DOI: 10.1016/j.solmat.2020.110696
[44] LI J L, ZHANG Y, ZHAO Y J, et al. Novel high specific heat capacity ternary nitrate/nitrite eutectic salt for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,227:111075. DOI: 10.1016/j.solmat.2021.111075
[45] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y L. Simplified force field for molecular dynamics simulations of amorphous SiO2 for solar applications[J]. International Journal of Thermal Sciences,2021,160:106647. DOI: 10.1016/j.ijthermalsci.2020.106647
[46] HE Z Z, YANG Q R, LI Z Y, et al. Effect of the mesoporous size, structure and surface on the melting and heat transport properties of solar salt[J]. Solar Energy Materials and Solar Cells,2022,248:111978. DOI: 10.1016/j.solmat.2022.111978
[47] LONAPPAN M. Thermal expansion of potassium nitrate[J]. Proceedings of the Indian Academy of Sciences—Section A,1955,41(6):239-244. DOI: 10.1007/BF03048789
[48] ZHOU W N, YANG Z X, FENG Y H, et al. Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer,2022,198:123422. DOI: 10.1016/j.ijheatmasstransfer.2022.123422
[49] ZHANG S, YAO Y P, JIN Y G, et al. Heat transfer characteristics of ceramic foam/molten salt composite phase change material (CPCM) for medium-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer,2022,196:123262. DOI: 10.1016/j.ijheatmasstransfer.2022.123262
[50] DONGHYUN S, DEBJYOTI B. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1064-1070. DOI: 10.1016/j.ijheatmasstransfer.2010.11.017
[51] DONGHYUN S, DEBJYOTI B. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat and Mass Transfer,2015,84:898-902. DOI: 10.1016/j.ijheatmasstransfer.2015.01.100
-
期刊类型引用(4)
1. 何成龙,霍子怡,刘亚青,杨可谞,毛翔. 陶瓷防弹板在多发打击下的损伤累积模拟与残余性能评估. 复合材料学报. 2024(06): 3228-3238 . 本站查看
2. 傅国峰,张鏖,梅勇,闫强,赵智宏,陈锦剑. 不同结构B_4C/Al复合材料抗侵彻性能研究. 防护工程. 2024(06): 1-8 . 百度学术
3. 王孝华,袁光明,谢渊,高思辰,王陶. 多层复合车载方舱大板结构抗侵彻性能研究. 机械设计与制造工程. 2023(05): 100-102 . 百度学术
4. 韩奇,杨阳,刘靖宇,王涛,李世强,曹勇. 止裂层对陶瓷复合防弹插板冲击损伤行为研究. 包装工程. 2023(21): 1-10 . 百度学术
其他类型引用(1)
-
目的
近年来,随着化石燃料的快速消耗,能源安全、气候变化问题日益突出,许多研究工作特别致力于寻找提高能源利用效率的方法,以缓解能源短缺和环境污染问题。相变储热技术在介质相变时可逆地吸收/释放大量的潜热,可解决能源供给在时间、空间上的不匹配等问题。硝酸盐盐相变材料由于其高的工作温度、良好的稳定性和低成本而成为广泛的相变储热材料。但是硝酸盐存在着过冷、液相泄漏、导热率低等一系列问题。目前微纳尺度下,借助液态熔盐与多孔材料孔隙之间的毛细力作用,在微观层面限制熔融盐小分子在一定的区域范围内运动,由于多孔载体本身所具有的特异性能,有助于提高复合相变材料(CPCM)的热物性,改善液相泄露等问题。
方法采用实验和分子动力学模拟相结合。实验方面,将NaNO和KNO按照重量比5:5、4:6、6:4、9:1进行称量,通过静态熔融法制备四种混合硝酸盐。使用冷冻干燥机通过冷冻干燥法制备多孔铝硅酸盐陶瓷,然后通过熔融浸渍法制备混合硝酸盐/多孔铝硅酸盐陶瓷CPCM。以无水乙醇、为溶剂,使用机械压制法制备混合硝酸盐/AlO、混合硝酸盐/SBA-15复合相变材料。在宏观尺度下通过透射电子显微镜观察CPCM内部形貌,通过通过差示扫描量热仪(DSC)和激光导热率分析仪测量CPCM的定压比热和热导率。模拟方面,使用Material Studio软件建立不同NaNO:KNO配比、不同骨架(AlO、SiO、AlO:SiO=1:3)CPCM模型,通过模拟计算,总结径向分布函数、界面结合能和体热膨胀系数的变化规律,从微观角度分析纳米尺度下CPCM热导率和定压比热的变化机制。
结果①受离子间相互作用和界面结合能的作用,在相同骨架材料中,随着NaNO含量的减少,CPCM的热导率逐渐增加;在同种混合硝酸盐配比中,CPCM的热导率的大小依次为:陶瓷>AlO>SiO,热导率分别从1.268 W/(m·K)增大到1.854 W/(m·K)、1.215 W/(m·K)增大到1.799 W/(m·K)、0.808 W/(m·K)增大到1.132 W/(m·K)。②在相同骨架材料中,除NaNO与KNO质量比为9:1之外,其他三种配比下复合材料的定压比热容随KNO含量的增大而增大;在同种混合硝酸盐配比中,以AlO为骨架的CPCM定压比热容最大,陶瓷骨架次之。同种混合硝酸盐配比下,以AlO为骨架的复合材料比热最大,比其他两种复合材料的定压比热平均高出1.06-1.13倍。③以SiO为骨架的体膨胀系数最大,比其他两种复合材料的体膨胀系数平均高出1.110-1.089倍。
结论在硝酸盐离子间相互作用与界面结合能的竞争中,骨架的加入虽然减弱了混合硝酸盐内部离子间的相互作用,降低了体系内部热量传递,但混合硝酸盐与骨架之间有了更好的结合,使不同频率声子间有效传递的能量增加,相应的平均自由程增加,导致材料热导率的提升。混合硝酸盐与界面间的界面结合能对热导率的影响占主导地位。离子间相互作用及界面结合能对定压比热的影响不明显,主要受离子对比例变化及骨架材料变化的影响。在本文已有的研究基础上,建议今后可以进一步拟合混合硝酸盐复合相变材料热物性公式,进而量化界面效应与混合硝酸盐配比间的竞争关系。
-
无机熔盐类储热温区大,价格便宜,因而在中高温储热领域具有优势。但其存在储热密度低、液相泄露、热导率较低、易腐蚀等一系列问题。多孔骨架材料的加入可以改善这些问题,但不同的骨架材料以及不同配比的混合熔盐均对热物性产生影响,本文主要研究不同骨架材料及不同配比混合熔盐对热物性影响的竞争性关系。
由于微观尺度下复合相变材料的热物性与宏观尺度下不同,本文首先通过实验手段制备复合相变材料,测定其热输运特性。再通过分子动力学模拟将4种不同质量比的混合硝酸盐分别吸附到SiO2、Al2O3、陶瓷三种骨架材料中制备了12种无机复合相变材料,从微观角度分析实验结果内在机制,阐明界面效应与熔盐离子间作用力对热输运特性的竞争性影响。