Abstract:
In order to improve the durability of superhydrophobic coatings, in this work, we designed a bottom-up coating system of “substrate-viscous self-healing polymer-hydrophobic particle”, thereby the superhydrophobic surface with self-healing function was successfully fabricated: Hyperbranched polydimethylsiloxane (HB-PDMS) with abundant hydrogen bonds as viscous self-healing polymer; Nano-SiO
2 was hydrophobic modified by myristic acid (MA) as hydrophobic particles to construct rough surface structure. When the mass ratio of MA to SiO
2 is 1∶1 and the modification time is 3 h, the superhydrophobic coating prepared has a contact angle of 152.61° and a sliding angle of 1.9°, which has excellent antifouling performance. The coating can be healed by simple heat treatment after being scratched by the blade, and has excellent self-healing performance. Compared with pure aluminum, the composite coating has better anti-corrosion performance and the corrosion inhibition efficiency can reach 87.53%. In addition, After 5 tape peel tests, linear wear tests with a wear length of 30 cm, ultrasonic shock tests of 50 min, 10 temperature differential cycles and 24 h ultraviolet irradiation, the contact angle remained above 150°, indicating that the coating has good mechanical stability and weather resistance. This study provides a new effective strategy for the preparation of self-healing superhydrophobic coatings, which is expected to be applied in the field of building antifouling.