轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能

席佳琦, 戴亚光, 夏雷, 王玉琼, 杨文刚, 吕卫帮

席佳琦, 戴亚光, 夏雷, 等. 轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能[J]. 复合材料学报, 2024, 41(1): 196-206. DOI: 10.13801/j.cnki.fhclxb.20230427.002
引用本文: 席佳琦, 戴亚光, 夏雷, 等. 轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能[J]. 复合材料学报, 2024, 41(1): 196-206. DOI: 10.13801/j.cnki.fhclxb.20230427.002
XI Jiaqi, DAI Yaguang, XIA Lei, et al. Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 196-206. DOI: 10.13801/j.cnki.fhclxb.20230427.002
Citation: XI Jiaqi, DAI Yaguang, XIA Lei, et al. Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 196-206. DOI: 10.13801/j.cnki.fhclxb.20230427.002

轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能

基金项目: 科技部重点研发计划(2022YFA1205400)
详细信息
    通讯作者:

    杨文刚,硕士,工程师,研究方向为纳米复合材料 E-mail: wgyang2019@sinano.ac.cn

    吕卫帮,博士,研究员,博士生导师,研究方向为纳米复合材料 E-mail: wblv2013@sinano.ac.cn

  • 中图分类号: TB333

Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film

Funds: National Key Basic Research Program of China (2022YFA1205400)
  • 摘要: 碳纤维增强树脂基复合材料(CFRP)导电性差,无法满足飞机航行过程中的雷击防护需求。金属化碳纳米管薄膜具备轻质、高导电、高载流的特点,可应用于复合材料雷击防护。采用电化学沉积工艺成功制备了一种碳纳米管(CNT)/Cu复合薄膜,并对其微观结构、电学性能及载流失效行为进行了表征分析。结果表明,CNT/Cu复合薄膜柔性较好,具有明显的梯度结构,铜的含量在薄膜厚度方向上逐渐递减。复合薄膜电导率与Cu同一量级,比电导率为Cu的2倍,载流量及比载流量分别为商用铜网的1.4倍和7倍。复合薄膜中的CNT抑制了Cu在大载流作用下电迁移的发生,进而延长其载流失效时间。基于CNT/Cu复合薄膜制备了CFRP雷击防护试样,进行人工模拟雷击试验及高精度损伤分析,评估雷击防护效果。与商用铜网雷击防护材料相比,CNT/Cu复合薄膜质量减轻61%,且表现出更为优异的雷击防护性能。

     

    Abstract: Due to the poor conductivity, carbon fiber reinforced resin matrix composites (CFRP) cannot meet the lightning strike protection requirement of aircrafts. The metallization of carbon nanotube (CNT) films are lightweight, and possess high conductivity and high current-carrying capacity, making them promising for lightning strike protection of composite materials. CNT/Cu composite films were successfully prepared by electrochemical deposition process, and its microstructure, electrical properties and current-carrying failure behavior were characterized and analyzed. The results show that CNT/Cu composite films are flexible and have gradient microstructures, where the content of Cu gradually decreases from one side to another. The electrical conductivity of the composite films is 2.16×107 S/m, and their specific conductivity is 2 times of pure Cu, and the current carrying capacity and specific current carrying capacity are 1.4 times and 7 times of copper mesh, respectively. CNTs in the composite film can inhibit the electromigration of Cu, thus prolonging its current-carrying failure time. CFRPs for lightning strike protection testing were prepared by using CNT/Cu composite films, and the lightning strike protection performance was evaluated by artificial simulation lightning test and damage analysis. Compared with copper mesh, CNT/Cu composite films are 61% lighter and showed more excellent lightning protection performance.

     

  • 图  1   (a) 浮动催化化学气相沉积法(FCCVD)制备的碳纳米管(CNT)薄膜;(b) 电化学沉积装置示意图

    Figure  1.   (a) Carbon nanotube (CNT) film prepared by floating catalytic chemical vapor deposition (FCCVD); (b) Schematic diagram of electrochemical deposition device

    图  2   (a) 人工模拟雷击测试装置;(b) 飞行器雷电效应2A区电流分量B波形;(c) 电流分量D波形;(d) 电流分量C*波形

    Figure  2.   (a) Artificial simulation lightning strike test device; (b) Waveform of current component B of aircraft lightning effect zone 2A; (c) Waveform of current component D; (d) Waveform of current component C*

    图  3   (a) 电化学沉积法制备的CNT/Cu复合薄膜试样;CNT/Cu复合薄膜上表面 (b) 及下表面 (c) 的SEM图像;复合薄膜截面微观形貌 (d) 及对应EDS元素表征 (e);(f) 复合薄膜截面Cu元素分布示意图

    Figure  3.   (a) CNT/Cu composite film sample prepared by electrochemical deposition; SEM images of upper (b) and lower surfaces (c) of CNT/Cu composite film; Micromorphology of CNT/Cu composite film section (d) and its elemental analysis by EDS (e); (f) Schematic diagram of Cu element distribution of composite film section

    图  4   CNT/Cu复合薄膜与铜网的电导率比较

    Figure  4.   Comparison of electrical conductivity between CNT/Cu composite film and Cu mesh

    图  5   CNT/Cu复合薄膜与铜网的载流量比较

    Figure  5.   Comparison of ampacity between CNT/Cu composite film and Cu mesh

    CCC—Current-carrying capacity

    图  6   CNT/Cu复合薄膜 ((a)~(d)) 及铜网 ((e)~(h)) 载流失效时的电迁移

    Figure  6.   Electromigration of CNT/Cu ((a)-(d)) and Cu mesh ((e)-(h)) current-carrying failure

    图  7   CNT/Cu复合薄膜载流失效断口形貌及元素分析:((a), (b)) 复合薄膜断口处SEM图像;((c), (d)) 图7(b)中对应位置元素线扫描及面扫描结果

    Figure  7.   Fracture morphology and elemental analysis of current carrying failure of CNT/Cu composite films: ((a), (b)) SEM images of composite film fracture; ((c), (d)) Line scan and map scan results of corresponding position elements in Fig. 7(b)

    图  8   CFRP试样截面形貌及界面形态:((a), (d), (g)) 商用铜网防护(Cu mesh-CFRP);((b), (e), (h)) 磁控溅射CNT/Cu复合薄膜防护(MS CNT/Cu-CFRP);((c), (f), (i)) 电沉积 CNT/Cu 复合薄膜防护(EP CNT/Cu-CFRP) (由上至下分别为3D共聚焦显微图、金相图、SEM图像)

    Figure  8.   Section morphology and interface morphology of CFRP samples: ((a), (d), (g)) Commercial copper mesh (Cu mesh-CFRP); ((b), (e), (h)) CNT/Cu composite films produced by magnetron sputtering (MS CNT/Cu-CFRP); ((c), (f), (i)) CNT/Cu composite films produced by electrodeposition (EP CNT/Cu-CFRP ) (From top to bottom are 3D confocal micrograph, metallographic diagram, SEM images)

    图  9   人工模拟雷击测试后试样表面损伤形貌:(a) NP-CFRP;(b) Cu mesh-CFRP;(c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP

    Figure  9.   Surface damage morphologies after artificial simulated lightning strike tests: (a) NP-CFRP; (b) Cu mesh-CFRP; (c) MS CNT/Cu-CFRP; (f) EP CNT/Cu-CFRP

    图  10   雷击中心点形貌表征:((a), (d)) Cu mesh-CFRP;((b), (e)) MS CNT/Cu-CFRP;((c), (f)) EP CNT/Cu-CFRP

    Figure  10.   Morphological characterization of lightning strike center point: ((a), (d)) Cu mesh-CFRP; ((b), (e)) MS CNT/Cu-CFRP; ((c), (f)) EP CNT/Cu-CFRP

    图  11   试样雷击试验后计算机断层(CT)扫描整体形貌:(a) NP-CFRP;(b) Cu mesh-CFRP;(c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP;随深度变化10%、20%、40%的剖面损伤形貌: ((a1)~(a3)) NP-CFRP;((b1)~(b3)) Cu mesh-CFRP;((c1)~(c3)) MS CNT/Cu-CFRP;((d1)~(d3)) EP CNT/Cu-CFRP

    Figure  11.   Computed tomography (CT) scanning of samples overall damage morphology after lightning strike test: (a) NP-CFRP; (b) Cu mesh-CFRP; (c) MS CNT/Cu-CFRP; (d) EP CNT/Cu-CFRP; Profile damage morphology varies by 10%, 20% and 40% with depth: ((a1)-(a3)) NP-CFRP; ((b1)-(b3)) Cu mesh-CFRP; ((c1)-(c3)) MS CNT/Cu-CFRP; ((d1)-(d2)) EP CNT/Cu-CFRP

    图  12   试样雷击试验后CT扫描截面图

    Figure  12.   CT scanning cross-section of samples after lightning strike test

    D—Thickness of the undamaged area after lightning strike

    图  13   试样雷击防护机制示意图

    Figure  13.   Schematic diagram of lightning strike protection mechanism for samples

    IH—Horizontal current; IV—Vertical current

    表  1   商用铜网参数

    Table  1   Commercial copper mesh parameters

    ProjectParameter
    Long intercept2.54 mm±5%
    Short intercept1.40 mm±6%
    Areal density(245±20) g/m2
    Long intercept direction resistance≤2.10 mΩ
    Short intercept direction resistance≤6.30 mΩ
    下载: 导出CSV

    表  2   雷击防护CFRP试样电导率测试结果

    Table  2   Conductivity test results of CFRP samples for lightning strike protection

    DirectionSampleConductivity/(S·m−1)
    X NP-CFRP 23.14±3.47
    Cu mesh-CFRP 31.02±2.88
    MS CNT/Cu-CFRP 55.82±6.55
    EP CNT/Cu-CFRP 99.81±7.13
    Y NP-CFRP 8.57±0.61
    Cu mesh-CFRP 19.62±2.36
    MS CNT/Cu-CFRP 32.19±2.66
    EP CNT/Cu-CFRP 62.87±9.47
    Z NP-CFRP 0.79±0.06
    Cu mesh-CFRP 1.30±0.07
    MS CNT/Cu-CFRP 1.65±0.25
    EP CNT/Cu-CFRP 2.38±0.35
    Notes: NP-CFRP—Completely unprotected carbon fiber reinforced composite;MS—Magnetron sputtering; EP—Electrodeposition.
    下载: 导出CSV

    表  3   4组CFRP试样雷击测试后损伤深度分析

    Table  3   Analysis of damage depth of four groups of CFRP samples after lightning strike test

    SampleTotal thickness/mmProtective layer thickness/mmTotal damage thickness/mmTotal damage rate/%Damage rate of carbon
    fiber structural layer/%
    NP-CFRP3.83701.45637.9537.95
    Cu mesh-CFRP4.3720.2180.67115.3510.91
    MS CNT/Cu-CFRP3.8700.0550.370 9.56 8.26
    EP CNT/Cu-CFRP3.8500.0500.050 1.30 0
    下载: 导出CSV
  • [1]

    SOULAS F, ESPINOSA C, LACHAUD F, et al. A method to replace lightning strike tests by ball impacts in the design process of lightweight composite aircraft panels[J]. International Journal of Impact Engineering,2018,111:165-176. DOI: 10.1016/j.ijimpeng.2017.09.007

    [2]

    VICTOR G. Structural health monitoring of aerospace composites[M]. New York: Academic Press, 2016: 1-23.

    [3]

    GUO Y L, XU Y, WANG Q, et al. Eliminating lightning strike damage to carbon fiber composite structures in Zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils[J]. Composites Science and Technology,2019,169:95-102. DOI: 10.1016/j.compscitech.2018.11.011

    [4]

    UMAN M A, RAKOV V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences,2003,39(1):61-81. DOI: 10.1016/S0376-0421(02)00051-9

    [5]

    GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences,2014,64:1-16. DOI: 10.1016/j.paerosci.2013.07.002

    [6]

    WANG F S, DING N, LIU Z Q, et al. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures,2014,117:222-233. DOI: 10.1016/j.compstruct.2014.06.029

    [7]

    DONG Q, GUO Y, SUN X, et al. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer,2015,56:385-394. DOI: 10.1016/j.polymer.2014.11.029

    [8]

    CHEN H, WANG F S, MA X T, et al. The coupling mechanism and damage prediction of carbon fiber/epoxy composites exposed to lightning current[J]. Composite Structures,2018,203:436-445. DOI: 10.1016/j.compstruct.2018.07.017

    [9]

    WANG B, ZHU Y, MING Y, et al. Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study[J]. Materials & Design,2020,192:108724.

    [10]

    ZHAO Z J, XIAN G J, YU J G, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composites Science and Technology,2018,167:555-562. DOI: 10.1016/j.compscitech.2018.08.026

    [11]

    KUMAR V, YOKOZEKI T, KARCH C, et al. Factors affecting direct lightning strike damage to fiber reinforced composites: A review[J]. Composites Part B: Engineering,2020,183:107688. DOI: 10.1016/j.compositesb.2019.107688

    [12]

    IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. DOI: 10.1038/354056a0

    [13]

    ZHANG S, NGUYEN N, LEONHARDT B, et al. Carbon-nanotube-based electrical conductors: Fabrication, optimization, and applications[J]. Advanced Electronic Materials,2019,5(6):1800811. DOI: 10.1002/aelm.201800811

    [14]

    DYDEK K, BOCZKOWSKA A, KOZERA R, et al. Effect of SWCNT-tuball paper on the lightning strike protection of CFRPs and their selected mechanical properties[J]. Materials,2021,14(11):3140. DOI: 10.3390/ma14113140

    [15]

    ZHANG J, ZHANG X, CHENG X, et al. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism[J]. Composites Part B: Engineering,2019,168:342-352. DOI: 10.1016/j.compositesb.2019.03.054

    [16]

    ARAI S. Fabrication of metal/carbon nanotube composites by electrochemical deposition[J]. Electrochem,2021,2(4):563-589. DOI: 10.3390/electrochem2040036

    [17]

    SUBRAMANIAM C, YAMADA T, KOBASHI K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Communications,2013,4:2202. DOI: 10.1038/ncomms3202

    [18]

    LEGGIERO A P, TRETTNER K J, URSINO H L, et al. High conductivity copper-carbon nanotube hybrids via site-specific chemical vapor deposition[J]. ACS Applied Nano Materials,2018,2(1):118-126.

    [19]

    BAZBOUZ M B, AZIZ A, COPIC D, et al. Fabrication of high specific electrical conductivity and high ampacity carbon nanotube/copper composite wires[J]. Advanced Electronic Materials,2021,7(4):2001213. DOI: 10.1002/aelm.202001213

    [20]

    SUNDARAM R M, YAMADA T, HATA K, et al. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires[J]. Materials Today Communications,2017,13:119-125. DOI: 10.1016/j.mtcomm.2017.09.003

    [21]

    SUNDARAM R M, YAMADA T, HATA K, et al. Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution[J]. Scientific Reports,2017,7(1):9267. DOI: 10.1038/s41598-017-09279-x

    [22]

    SUNDARAM R, SEKIGUCHI A, SEKIYA M, et al. Copper/carbon nanotube composites: Research trends and outlook[J]. Royal Society Open Science,2018,5(11):180814. DOI: 10.1098/rsos.180814

    [23] 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9):4354-4365.

    GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica,2022,39(9):4354-4365(in Chinese).

    [24]

    Society of Automotive Engineers. Aircraft lightning test methods: SAE ARP 5416A—2013[S]. Washington D.C.: Society of Automotive Engineers International, 2013.

    [25]

    Society of Automotive Engineers. Aircraft lightning environment and related test waveforms: SAE ARP 5412B—2013[S]. Washington D.C.: Society of Automotive Engineers International, 2013.

    [26]

    HWANG H J, JOO S J, KIM H S. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering[J]. ACS Applied Materials & Interfaces,2015,7(45):25413-25423. DOI: 10.1021/acsami.5b08112

    [27]

    HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties[J]. Polymers,2012,4(1):275-295. DOI: 10.3390/polym4010275

  • 期刊类型引用(8)

    1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
    2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
    3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
    4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
    5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
    6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
    7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
    8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看

    其他类型引用(8)

  • 目的 

    随着飞行器轻量化需求不断提高,碳纤维增强树脂基复合材料(CFRP)在民用飞机的使用量越来越多,但CFRP导电性较差,难以满足飞机雷击防护需求,因此亟需开发轻质高导电材料以提高CFRP的雷击防护能力。利用电沉积法制备碳纳米管(CNT)/铜(Cu)复合薄膜,构建铜碳交互的梯度结构,并基于导电防护层对CFRP进行人工模拟雷击试验,评估轻质高导电金属化碳纳米管薄膜的雷击防护性能。

    方法 

    以浮动催化化学气相沉积法制备的碳纳米管薄膜为基底,通过优化的电沉积工艺制备具有铜碳交互梯度结构的碳纳米管/铜复合薄膜。对复合薄膜在大载流条件下进行失效分析,研究其载流失效机制。基于商用铜网、磁控溅射CNT/Cu复合薄膜及电沉积CNT/Cu复合薄膜制备雷击防护CFRP试样,进行人工模拟雷击试验,对各组试样损伤情况的多尺度表征用以评估雷击防护效果。

    结果 

    (1)由CNT/Cu复合薄膜SEM及EDS表征结果可知,电沉积法可以在CNT薄膜中沉积纳米尺度Cu,并构建铜碳交互的梯度结构,即Cu在复合薄膜上表面富集而下表面保留CNT多孔网络结构;由CNT/Cu复合薄膜的电导率及载流量测试结果可知,复合薄膜的电导率低于纯铜,比电导率高于纯铜,说明在导电能力相同的情况下,复合薄膜具有更轻的质量;CNT/Cu复合薄膜具有比商用铜网更高的载流量,对其进行大载流条件下的失效分析研究发现,商用铜网载流失效发生的原因是电子风引起原子动能增大及热梯度扩散而引发了Cu迁移,局部电阻增大而温度急剧上升,最终熔断,而对于CNT/Cu复合薄膜,Cu先发生迁移,剩余的CNT维持导电通路,进而延长其完全断裂的时间,表现出更高的载流能力。(2)由雷击防护CFRP试样截面形貌表征结果,电沉积CNT/Cu复合薄膜的梯度结构使其与CFRP之间存在树脂增强区域;板材电导率测试说明导电防护层的铺设明显提高了CFRP的导电能力;对雷击后的CFRP试样在多尺度下的损伤分析结果表明,电沉积CNT/Cu复合薄膜防护试样损伤深度浅,内部分层少,下层碳纤维未见损伤。因此电沉积CNT/Cu复合薄膜具有比商用铜网更好的防护效果,且质量减轻61%。

    结论 

    (1)通过单次电化学沉积法制备了CNT/Cu复合薄膜,纳米尺度Cu晶粒填充在CNT薄膜网络内部,构建上表面Cu富集下表面保留CNT网络的梯度结构。(2)复合薄膜具备轻质、高导电、高载流的性能特点:电导率为2.16×10 S/m,比电导率为12 S·m/g,载流量和比载流量分别是商用铜网材料的1.4倍和7倍,并具有良好的柔性。与此同时,CNT/Cu复合薄膜中CNT对于Cu迁移的抑制作用,增加了载流时间,表现出更高的载流能力。(3)通过直接观察、显微镜表征、CT内部扫描对雷击防护CFRP试样表面及内部损伤情况进行分析,计算量化CFRP总体损伤率及碳纤维结构层损伤率,与商用铜网和磁控溅射法制备的CNT/Cu复合薄膜相比,EP CNT/Cu-CFRP试样损伤深度浅,内部分层少,总体损伤率仅为1.3%,碳纤维结构层未见损伤,表现出更好的雷击防护效果。

  • 碳纤维增强树脂基复合材料具有轻质、高强度、高模量等优点,在航空航天领域得到广泛的应用,尤其在飞机的结构材料中占有极大的比重。但由于碳纤维增强树脂基复合材料电学性能差,在飞机遭受雷击时易造成严重破坏,影响飞行安全。现有的铜网雷击防护方案密度大、与碳纤维复合材料层结合较差,亟需开发一种轻质、高导电且与碳纤维复合材料层结合好的薄膜材料。

    碳纳米管薄膜金属化是制备轻质高导电材料的有效手段之一。本文采用电化学沉积法成功制备了一种具有纳米尺寸Cu晶粒部分填充于碳纳米管薄膜网络内部、上表面Cu富集、且下表面保留了碳纳米管薄膜多孔结构的轻质高导电金属化碳纳米管薄膜。该复合薄膜的电导率为2.16×107 S/m(Cu为5.7×107 S/m),比电导率为12 S·m2/g,是Cu的2倍(Cu的比电导率为6.36 S·m2/g),载流量为2.18×104 A/cm2,比载流量为12132 A·cm/g,分别为商用铜网的1.4倍和7倍,且具有较好的柔性。同时,复合薄膜中的碳纳米管可以有效抑制Cu在大载流作用下电迁移的发生,进而延长材料载流失效的时间,提高了材料的载流能力。基于CNT(碳纳米管)/Cu(铜)复合薄膜制备了CFRP雷击防护试样,进行人工模拟雷击试验及高精度损伤分析,评估雷击防护效果。与商用铜网雷击防护材料相比,CNT/Cu复合薄膜质量减轻61%,且表现出更为优异的雷击防护性能。

    碳纤维增强树脂复合材料雷击防护示意图(a)和防护层CNT/Cu复合薄膜截面Cu分布示意图(b)

图(13)  /  表(3)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  320
  • PDF下载量:  77
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回