磁场增强各向异性结构电流变弹性体的制备

Preparation of an electrorheological elastomer with anisotropic structure enhanced by magnetic field

  • 摘要: 通过溶胶-凝胶法在水热法合成的Fe3O4表面包覆了一层TiO2,得到Fe3O4@TiO2核壳颗粒,采用XRD、SEM、TEM对颗粒结构和形貌进行了表征。随后,将该颗粒填充于硅橡胶基体中,利用颗粒的磁特性使其在磁场下固化,制备了颗粒体积分数为14vol%的弹性体。用旋转流变仪测试了弹性体在不同电场强度下的电致变模量特性,与填充TiO2颗粒并在电场下固化的电流变弹性体进行对比,相对电流变效应相较于后者提升了71.9%。通过光学显微镜观察弹性体截面,发现磁场下固化的弹性体有更好的颗粒取向。由此,采用磁电双响应特性的颗粒作为分散相,在外加磁场下使基体固化,可获得具有更显著颗粒链结构的弹性体材料,克服了现有电流变弹性体在外电场下固化介电颗粒预排布结构不明显的问题,提高了所制备弹性体的电流变效应,同时消除了固化时外加高压电源的安全隐患,为高性能电流变弹性体的开发制备提供了新的思路。

     

    Abstract: A core-shell composite particle consisting of a magnetic Fe3O4 core and TiO2 shell has been synthesized by sol-gel method. The structure and morphology of the particles were characterized by XRD, SEM and TEM. Then, the particles were filled in the silicone rubber and cured under the magnetic field to prepare the anisotropic electrorheological (ER) elastomer with a particle concentration of 14vol%. The viscoelastic properties of the elastomer under different electric field strength were measured by using a rotational rheometer, compared with the TiO2 particles filled elastomer cured under electric field, the Fe3O4@TiO2 filled elastomer presents better particle orientation and ER effect. So using the particles with electric and magnetic dual response as the dispersion phase can solve the problem that the particles orientation of the ER elastomer is not obvious and improve the ER effect. At the same time, this method can also eliminate the safety hazard caused by the high voltage power supply in the traditional curing process.

     

/

返回文章
返回