陶瓷基复合材料紧固件制造技术及其连接性能研究进展

Review of preparation processes and joining performance of ceramic matrix composite fasteners

  • 摘要: 连续纤维增韧碳化硅复合材料(CMC-SiC)热结构部件已广泛应用于航天、航空、航发领域,该部件通常采用组合装配集成制造技术研制,发展新型高性能CMC-SiC紧固件制备技术是推动部件制造技术的关键之一。本文从组装集成制造技术需求特点出发,阐述了CMC-SiC紧固件的类别、制备技术和微结构特点,分析了CMC-SiC复合材料对CMC-SiC紧固件力学性能的制约关系,总结了CMC-SiC机械连接剪切行为、钉载分配和拉伸行为的研究现状,揭示了CMC-SiC紧固件静态力学性能及其失效机制。进一步分析了CMC-SiC紧固件振动松弛机制及其防松措施,探讨了氧化损伤对CMC-SiC紧固件性能的影响。据此,从预制体结构设计、制备工艺和紧固件结构角度,提出了CMC-SiC紧固件性能优化途径,最后展望了CMC紧固件制备技术及其连接性能的发展。

     

    Abstract: Thermal structural components made of continuous fibre-reinforced silicon carbide ceramic matrix composites (CMC-SiC) have been widely employed in aerospace and aeronautical fields. Integrated manufacturing techniques have been also extensively utilized to assembly CMC-SiC parts together to form large and complex components. The development of novel high-performance CMC-SiC fasteners has become critical manufacturing technology. In this work, different types, preparation methods, and microstructural characteristics of CMC-SiC fasteners were reviewed based on unique demands in terms of component preparation. It is demonstrated that shear strength of fasteners was very similar to in-plane shear strength of composites. Tensile and shear behaviours, load distribution among fasteners, failure mechanisms, and oxidation damages of CMC-SiC bolted/pinned joints were summarized. Furthermore, vibration relaxation mechanism and related anti-loosening effect were discussed. Accordingly, an optimization of CMC-SiC fasteners was proposed based on fibre architecture design, preparation process, and fastener structure. In the last, the development of CMC fastener manufacturing and their joining perfor-mance was prospected.

     

/

返回文章
返回