纤维增强复合材料钻削热研究进展与展望

刘勇, 潘子韬, 周宏根, 景旭文, 李国超

刘勇, 潘子韬, 周宏根, 等. 纤维增强复合材料钻削热研究进展与展望[J]. 复合材料学报, 2023, 40(8): 4416-4439. DOI: 10.13801/j.cnki.fhclxb.20230227.003
引用本文: 刘勇, 潘子韬, 周宏根, 等. 纤维增强复合材料钻削热研究进展与展望[J]. 复合材料学报, 2023, 40(8): 4416-4439. DOI: 10.13801/j.cnki.fhclxb.20230227.003
LIU Yong, PAN Zitao, ZHOU Honggen, et al. Review and prospect of drilling heat for fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4416-4439. DOI: 10.13801/j.cnki.fhclxb.20230227.003
Citation: LIU Yong, PAN Zitao, ZHOU Honggen, et al. Review and prospect of drilling heat for fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4416-4439. DOI: 10.13801/j.cnki.fhclxb.20230227.003

纤维增强复合材料钻削热研究进展与展望

基金项目: 国家自然科学基金(52105450);江苏省高校基金项目(21KJB460016)
详细信息
    通讯作者:

    刘勇,博士,讲师,硕士生导师,研究方向为复合材料切削加工 E-mail: liuyong.1991.happy@just.edu.cn

  • 中图分类号: TG52;TB332

Review and prospect of drilling heat for fiber reinforced composite

Funds: National Natural Science Foundation of China (52105450); University Science Research Project of Jiangsu Province (21KJB460016)
  • 摘要: 纤维增强复合材料(Fiber reinforced composites,FRC)钻削过程中产生的切削热及冷却策略对其工艺参数的优化与加工表面质量的控制起着至关重要的作用。本文从钻削热理论研究、钻削热对加工质量的影响研究、钻削热的影响因素与控制策略3个方面对FRC钻削热进行系统性的分析与概述。首先,综述了FRC钻孔过程中的钻削热形成机制、热传导与热损伤预测、切削热的数值模拟等理论研究。然后,阐述了FRC钻削热的主要测量方法及切削热对孔加工质量的影响,并探讨了FRC制孔的切削热影响因素及其辅助加工控制钻削热方法。最后,总结了当前FRC钻削热研究存在的问题及今后研究的重点。

     

    Abstract: The research on the generated cutting heat and cooling strategies plays a crucial role in the optimization of process parameters and the control of hole's surface quality in drilling of fiber reinforced composite (FRC). In this paper, the review and prospect on the drilling heat during drilling FRC is systematically analyzed and summarized from three aspects: The theoretical research of drilling heat, research on the influence of drilling heat on machining quality, influencing factors and control strategies of drilling heat during drilling. Firstly, the theoretical research of drilling heat formation mechanism, heat conduction and heat damage prediction, and numerical simulation of cutting heat in FRC drilling process were summarized. Then, the main measurement methods of FRC drilling heat and the effect of cutting heat on the quality of hole machining were introduced. Meanwhile, the influencing factors of cutting heat and its auxiliary processing methods to control FRC drilling heat were discussed. Finally, the current existing problems and key points on the next study of FRC drilling heat were summarized.

     

  • 随着超高速飞行器马赫数的不断提升,对飞行器电缆罩等结构件的质量、力学承载性能、抗静电性能和防热性能等都提出了更为苛刻的要求[1]。传统的飞行器耐高温与承载部件大多采用金属材料,并在表面涂覆涂层来实现防热,这种结构存在质量大、隔热差及耐用性难保证等缺点,难以满足结构-功能一体化的设计需求[2-3]。纤维增强树脂基复合材料由于其丰富的结构设计性、优异的热-力性能和低成本加工与维护等优势,已成为耐高温领域的理想候选材料[4-5]

    为满足纤维增强树脂基复合材料高承载-功能一体化的使用需求,通常采取纤维混杂和使用三维纺织结构的方式[6-7]。例如,碳纤维(CF)和玻璃纤维(GF)混杂不仅能在力学性能上实现互补,提高其承载效率,还可以对纤维进行合理的排布和编织,获得更低的电阻率和导热系数[8-9]。此外,2.5D机织复合材料作为一种新型三维纺织结构复合材料,其纬纱平行排列,经纱在垂直于纬纱的方向以一定角度进行交织。在受力过程中,结构中的经纱可以阻碍裂纹的扩展,有效阻止分层现象发生[10-11]。在使用过程中,2.5D机织复合材料常处于极端热环境下,由高温引起的热应力集中和热变形过大常常导致复合材料提前失效,因此,研究2.5D机织复合材料的热-力学行为具有重要的理论和实践意义[12-13]

    近几十年来,热固性树脂的快速发展,大大加快了纤维增强树脂基复合材料高温力学性能的研究。Ruggles-Wrenn等[14]研究了二维层合和三维正交机织碳/聚酰亚胺复合材料在329℃下的拉伸-压缩疲劳行为。Zhao等[15]围绕2.5D机织碳/双马来酰亚胺树脂(简称为双马树脂)复合材料进行了常温和高温下纬向拉伸疲劳研究,分析了温度和疲劳载荷分别对2.5D机织碳/双马复合材料性能的影响。Song等[16]探究了温度对2.5D机织碳/双马复合材料拉伸性能影响,并分析了其微观损伤模式和高温下的损伤机制。Dang等[17]探究了2.5D机织碳/环氧复合材料温度效应下的弯曲失效机制,发现室温和高温下2.5D机织碳/环氧复合材料的主要破坏机制均包括纤维的断裂、基体开裂和界面脱粘,但高温下因基体软化,试样损伤更加严重。曹淼[18]为研究2.5D机织碳/环氧复合材料的热氧稳定性和层间性能,开展了不同老化时间下的层间剪切和冲击后弯曲力学性能测试,并分析了其力学性能随老化时间退化规律。Rathore等[19]研究了温度对碳-玻纤/环氧层合复合材料弯曲性能的影响,随着温度的升高,复合材料的强度和刚度都持续下降,且碳纤维铺层数更多的复合材料力学性能下降速度更快。于洋等[20]研究了高温老化对三维正交碳-玻纤/双马复合材料的三点弯曲和层间剪切力学性能影响,结果发现Z向纱线可以有效阻挡层间裂纹的扩展,减缓材料的老化速率。目前,学者们针对2.5D机织复合材料的热-力学行为研究主要围绕非混杂结构,而关于2.5D机织混杂结构复合材料在高温环境下的损伤及混杂协同机制的研究还鲜有报道[21-22]

    本文设计制备了2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料(简称为2.5D机织混杂复合材料),并根据复合材料的动态热机械性能设定了力学性能测试温度上限,开展了不同温度场(25℃、150℃、240℃、300℃)下2.5D机织混杂复合材料的三点弯曲和层间剪切力学性能测试。借助光学显微镜和扫描电镜对试样的断口形貌进行了观测,阐明了2.5D机织混杂复合材料的高温力学行为及损伤机制,以期为三维纺织复合材料的多功能-承载一体化设计和应用提供数据依据。

    2.5D机织混杂复合材料增强体选用日本东丽公司生产的T300-3 K型碳纤维和南京玻璃纤维研究设计院生产的E型玻璃纤维,并通过多层角联织机完成织造,基体选用航天材料及工艺研究所研制的R801双马树脂。其中,复合材料截面和预制体结构示意图如图1所示,碳纤维、玻璃纤维和双马树脂性能如表1所示。此外,2.5D机织混杂复合材料增强体的混杂方式为夹芯混杂,整个结构一共有6层,中间4层为玻璃纤维,顶层和底层为碳纤维,增强体编织参数如表2所示。并采用树脂传递模塑工艺(RTM)制备2.5D机织混杂复合材料,树脂注射温度为100℃,固化工艺为:170℃ 2 h、210℃ 3 h、230℃ 3 h,常温冷却,并利用下式计算复合材料的纤维体积分数,结果见表2

    Vf=1MmρabH
    (1)

    式中:Vf为纤维体积含量(vol%);M为复合材料质量(g);m为增强体质量(g);ρ为双马树脂密度(g·cm−3);abH分别对应着复合材料的长(mm)、宽(mm)、厚(mm)。

    图  1  2.5D机织混杂复合材料截面和预制体结构示意图
    Figure  1.  Schematic diagram of 2.5D woven hybrid composite material section and precast structure
    表  1  复合材料各组分性能参数
    Table  1.  Performance parameters of each component of composite materials
    MaterialTypeTensile strength/MPaTensile modulus/GPaElongation at break/%Density/(g·cm−3)
    Carbon fiber (CF)T300-3 K35302302.11.8
    Glass fiber (GF)E3400 734.82.54
    BismaleimideR801 90 4.22.51.25
    下载: 导出CSV 
    | 显示表格
    表  2  2.5D机织混杂复合材料参数
    Table  2.  2.5D woven hybrid composite material parameters
    YarnFiber linear
    density/tex
    LayerPreformed unit
    density/(yarn·cm−1)
    Composite
    thickness/mm
    Fiber volume
    fraction/vol%
    Warp (CF)200281.8549.87
    Warp (GF)14448
    Weft (CF)20034
    Weft (GF)14448
    下载: 导出CSV 
    | 显示表格

    采用DMA Q800型动态热机械分析仪(DMA)对复合材料动态热机械性能进行测试。试样尺寸为50 mm×10 mm×1.85 mm (长×宽×厚),加载方式为三点弯曲,测试频率为1 Hz,升温速率为5℃/min,测试温度范围为25℃(室温)~350℃。最终根据复合材料热力学性能设定三点弯曲和层间剪切性能测试温度。

    复合材料三点弯曲力学性能测试参照标准GB/T 1449—2005[23],试样尺寸为70 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为54 mm。弯曲强度σ3b、弯曲模量E的计算公式如下所示:

    σ3b=3PL2WH2
    (2)
    E=KL34WH3
    (3)

    式中:P为最大弯曲载荷(N);L为三点弯曲的测试跨距(mm);W为复合材料试样的宽度(mm);H为复合材料的厚度(mm);K为三点弯曲载荷-位移曲线的斜率值。

    复合材料层间剪切力学性能测试参照标准JC/T 773—2010[24],试样尺寸为20 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为10 mm,层间剪切强度τm计算公式如下所示:

    τm=3P4WH
    (4)

    复合材料的三点弯曲和层间剪切实验均在MTS Criterion C44电子万能试验机(美特斯工业系统(中国)有限公司)上进行,实验温度为25、150、240和300℃。其中,高温下的力学性能测试需借助高温炉进行加热,升热速率为10℃/min,当温度达到设定温度时,保温30 min,使试样受热均匀。每个温度下测试3个试样,取平均值。试样形状尺寸和实验加载图如图2所示。

    图  2  高温力学性能测试设备及加载方式
    Figure  2.  High temperature mechanical properties test equipment and loading method

    采用深圳超眼的DM4带屏显微镜和日本日立SU8100型场发射扫描电子显微镜(SEM)对三点弯曲和层间剪切加载后试样的宏细观损伤形貌进行观测。

    图3为2.5D机织混杂复合材料的DMA曲线,其在高温下的动态力学性能可通过储能模量和损耗因子来表征,其中,储能模量反映材料刚度,损耗因子反映材料形变过程能量耗损大小[25]。测试结果表明,随着温度的升高,2.5D机织混杂复合材料的储能模量逐渐降低,损耗因子先增后减。当温度为300℃时,储能模量保留率仍有72.32%,表现出优异的耐高温性能。当温度升高到304℃左右时,储能模量开始急剧下降,此时的温度为复合材料的玻璃化转变温度(Tg)。基于此,将2.5D机织混杂复合材料三点弯曲和层间剪切力学性能最高测试温度设为300℃。

    图  3  2.5D机织混杂复合材料DMA曲线
    Figure  3.  DMA curves of 2.5D woven hybrid composite

    图4(a)为不同温度下2.5D机织混杂复合材料的三点弯曲载荷-位移曲线。可以看出,2.5D机织混杂复合材料表现出明显的温度效应,随着温度升高,曲线的斜率以及峰值载荷都逐渐下降。在25℃下,初始阶段曲线呈线性上升,在第一次达到峰值载荷后略有下降,这代表试样开始出现损伤,但此时复合材料并未失效,随着载荷重新分配,曲线再次上升。在150℃和240℃高温场中,复合材料载荷-位移曲线与室温下相似,载荷在达到峰值后,也未完全失效,但同室温下相比,载荷波动更加缓和,塑性特征更加显著。在300℃下,此时温度接近复合材料的玻璃化转变温度,树脂开始从玻璃态向高弹态转变,纤维/基体界面结合力减弱,应力传递效率降低,曲线斜率及峰值载荷有明显下降[19]

    图  4  不同温度下2.5D机织混杂复合材料三点弯曲力学性能:(a) 载荷-位移曲线;(b) 弯曲强度和弯曲模量
    Figure  4.  Three-point bending mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Flexural strength and flexural modulus

    图4(b)为不同温度下2.5D机织混杂复合材料的弯曲强度和模量。可以看出,随着温度升高,2.5D机织混杂复合材料的弯曲强度和模量逐渐下降。复合材料在150、240和300℃下的平均弯曲强度分别为261.20、251.63和237.30 MPa,相较于25℃下试样的弯曲强度(308.43 MPa)分别降低了15.31%、18.42%和23.06%;150、240和300℃下的平均弯曲模量分别为27.98、21.14和9.33 GPa,相较于25℃下试样的弯曲模量(31.11 GPa)分别降低了10.06%、32.05%和70.01%。可以看出,相较于弯曲模量,弯曲强度对温度的敏感性更低。

    图5为不同温度下2.5D机织混杂复合材料三点弯曲测试后受压面、受拉面和侧面的损伤形貌。可以看出,随着温度升高,试样受压面和受拉面上的损伤逐渐减弱,从侧面观察到试样的损伤主要集中在试样的上半部分并沿经纱方向扩展,主要的损伤模式包括纱线断裂、基体裂纹、纤维/基体脱粘和分层等。

    图  5  不同温度下2.5 D机织混杂复合材料弯曲损伤宏观形貌
    Figure  5.  Macromorphologies of bending damage of 2.5 D woven hybrid composites at different temperatures

    在25℃下,2.5D机织混杂复合材料表面受损严重,树脂发生脆性失效,典型的破坏模式是受压面的纤维剪切断裂和受拉面的基体开裂。侧面可以看到基体出现细微裂纹、纤维扭结断裂及树脂与纤维束间发生轻微脱粘。其中,纤维的断裂主要集中在复合材料的顶层,这是由于CF断裂应变较低,在弯曲载荷作用下比GF更容易出现损伤。试样底层未发生明显破坏,表现出较好的抗拉性能。随着温度升高(150℃),载荷对试样表面的损伤相对减弱,基体破坏面积减少,在试样的侧面可以看到基体裂纹数量增多且伴有层间裂纹并沿着经纱方向扩展。在240℃下,试样侧面的基体裂纹继续扩张并向厚度方向延展,中间层GF出现局部扭结带,纤维/基体界面脱粘现象更加显著。在300℃下,复合材料韧性增强,试样受拉面仅有局部微裂纹产生,没有出现明显的纤维断裂。但由于复合材料界面粘结强度降低,试样出现了更大面积的脱粘现象。

    为进一步研究2.5D机织混杂复合材料在不同温度下的弯曲破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌观测,如图6所示。可以看出,温度对2.5D机织混杂复合材料的损伤影响显著。在25℃下,可以观察到树脂基体的开裂及纤维束的剪切断裂,且断面较整齐,具有明显的脆性特征。在150℃下,断口中存在明显纤维抽拔,纤维上树脂呈鳞片状附着在其表面,界面剥离特征明显。240℃下,复合材料逐渐表现出塑性特性,可见局部基体发生塑性开裂,界面强度降低,纤维发生扭转和开裂。在300℃下,由于分子热运动加剧,基体软化,复合材料的界面结合状况更差,微裂纹沿复合材料的经纱和纬纱方向扩散,纤维与基体分离严重。

    图  6  不同温度下2.5D机织混杂复合材料弯曲损伤SEM图像
    Figure  6.  SEM images of bending damage of 2.5D woven hybrid composites at different temperatures

    由以上研究可以看出,2.5D机织混杂复合材料在弯曲载荷作用下,试样上侧承受压缩应力,下侧承受拉伸应力,同时伴随着面内剪切作用,复合材料弯曲受力示意图如图7(a)所示。因此,当2.5D机织混杂复合材料受到弯曲载荷时,上侧受压缩应力作用发生局部损伤。随着载荷的增加,纤维束上的纤维微裂纹增加并且不断地沿着轴向扩展。同时,下侧基体受拉开裂,整个破坏是从受压面外侧到受拉面内侧的渐进过程,屈曲状态相反的经纱起主要的承载作用,如图7(b)所示。当温度升至300℃时,由于树脂基体软化,界面黏附力降低,更容易出现脱粘现象。同时,由于软化后的树脂对内部纤维的保护,试样没有明显的纤维断裂,承载主体由纤维向树脂基体转变[26]。此外,纤维和基体热膨胀系数存在一定差异,且碳纤维热膨胀系数(−1×10−6~1×10−6 K−1)和双马树脂热膨胀系数(4.4×10−5 K−1)差异比玻璃纤维(5×10−6~12×10−6 K−1)和双马树脂差异更大。随着温度升高,纤维比树脂以更慢的速率膨胀,会在界面处产生热应力并出现损伤,且碳纤维和双马树脂间的界面损伤更加严重[19, 27]。在弯曲载荷的作用下,损伤开始相互结合并扩展,最终导致复合材料高温下的失效,如图7(c)所示。

    图  7  2.5D机织混杂复合材料弯曲受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  7.  Schematic diagram of bending force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    短梁剪切测试被广泛用于表征材料层间剪切行为,在测试时通过缩小试样弯曲跨厚比来增加内部剪切应力,使试样发生层间破坏从而获得层间剪切强度[28]图8(a)为不同温度下2.5D机织混杂复合材料层间剪切载荷-位移曲线。可以发现,随着温度的升高,纤维和基体间的结合作用减弱,试样抗剪切性能逐渐下降,4条曲线的峰值载荷和斜率逐渐减小并呈塑性断裂特征。在25℃下,试样初始阶段载荷-位移曲线呈近似线性关系,纤维/基体界面保持良好的力学性能。载荷达到峰值后会小幅度下降,这代表试样可能出现了基体开裂和纤维断裂损伤。但试样并未失效,继续加载过程中由于损伤累积,应力呈波动下降直至最终失效,表现出较好的断裂韧性。在150℃和240℃下,试样载荷-位移曲线同室温下相似,此时测试温度没有达到复合材料的玻璃化转变温度,纤维和树脂基体的性能并未受到严重影响。在300℃下,2.5D机织混杂复合材料层间剪切力学性能下降较为明显,这是由于复合材料失效主要由纤维和基体的界面状态决定。此时温度接近复合材料的玻璃化转变温度,基体出现软化,并且由于纤维与其外围树脂热膨胀系数差异导致纤维/基体界面处的的应力传递效率进一步降低。

    图  8  不同温度下2.5D机织混杂复合材料层间剪切力学性能:(a) 载荷-位移曲线;(b) 剪切强度
    Figure  8.  Interlayer shear mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Shear strength

    不同温度下复合材料的层间剪切强度如图8(b)所示,可知,2.5D机织混杂复合材料层间剪切强度随温度升高不断下降,说明温度对试样层间剪切性能有着显著影响。复合材料在150、240和300℃下的平均弯曲强度分别为30.53、29.72和26.03 MPa,相较于25℃下试样的层间剪切强度(32.11 MPa)分别降低了4.92%、7.47%和18.93%。试样在各温度场下的剪切强度变化不大,表现出优异的层间剪切性能。

    图9为不同温度下2.5D机织混杂复合材料层间剪切测试后的侧面损伤形貌。可以看出,短梁试样上半部分受压出现纱线与基体界面开裂,下半部分呈拉伸破坏并存在明显的分层现象。随着温度升高,界面退化引起损伤范围增大,导致试样最终失效。主要的损伤模式为纱线断裂、基体开裂、界面脱粘及分层等。

    在25℃下,由于剪切应力作用,基体产生微裂纹并在材料内部传播,在纤维/基体界面处发生应力集中,引起分层和基体开裂。由于试样接结经纱在厚度和面内方向的分布,抑制了分层的扩展。试样未出现明显弯折,表明复合材料内部损伤并不严重。在150℃下,试样底部出现了明显的纤维断裂和大面积的界面开裂,其中,CF的断口较为平整,而GF抽拔现象比较严重。在240℃下,试样出现了大面积的界面脱粘和开裂现象,并集中在受压面和受拉面处。在300℃下,基体抵抗变形的能力减弱,试样发生塑性变形。由于纤维和基体的主要作用分别是承载和传递载荷,软化的基体不能有效将来自压头的压应力传递给纤维束,使纤维与树脂界面脱粘和分层破坏进一步加重,层间裂纹、层内横向裂纹和层内纵向裂纹交织在一起,并由表面向内部扩展。

    图  9  不同温度下2.5D机织混杂复合材料层间剪切侧面损伤形貌
    Figure  9.  Morphology of 2.5D woven hybrid composites with interlayer shear side damage at different temperatures

    为进一步研究2.5D机织混杂复合材料在不同温度条件下层间剪切破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌的观测,如图10所示。可以看出,2.5D机织混杂复合材料的失效模式随着温度的升高发生了较大的改变。在25℃下,复合材料表现出较大的脆性,试样断口附近存在大量基体碎屑。同时,纤维表面附有较多树脂,表现出良好的界面黏结性能。在150℃下,纤维表面相对光滑,树脂较少,此时树脂开始软化,界面结合作用减弱。在240℃下,复合材料的界面结合状况更差,纤维束与树脂接触面分离,大量纤维断裂。在300℃下,基体对纤维的黏附力下降,可以清楚地看到纤维的抽拔以及纤维从基体上剥离的轨迹。

    图  10  不同温度下2.5D机织混杂复合材料层间剪切损伤SEM图像
    Figure  10.  SEM images of interlaminar shear damage of 2.5D woven hybrid composites at different temperatures

    短梁法在测定2.5D机织混杂复合材料层间剪切强度时,不仅存在层间剪切应力,还有弯曲应力、横向剪切应力和局部挤压应力等[29],如图11(a)所示。室温下,2.5D机织混杂复合材料试样上侧受压缩应力作用,基体内部出现微小裂纹,纤维产生扭结而断裂,下侧在拉伸应力和剪切应力作用下发生脱粘,进而表现出分层破坏。由于复合材料内部纤维与基体界面黏结良好,有效地阻止了裂纹的扩展和分层破坏,试样失效部分较少,如图11(b)所示。在300℃高温环境下,由于纤维/基体界面性能减弱,软化的基体不能将弯曲载荷及时有效传递给增强体纤维束,在剪切应力作用下更容易产生分层破坏,复合材料损伤区域增大。同时,高温下基体抵抗变形的能力减弱,试样发生塑性变形,纤维弯折程度加大,进而出现应力集中,造成纱线断裂。此外,下侧经纱在拉伸应力作用下会向内收缩,并对相邻纬纱产生挤压,导致其发生相应的挤压破坏,如图11(c)所示。界面开裂区域多、失效部分少,增强体承载大部分剪切应力,与基体之间的应力差异增大,树脂裂纹沿经纱方向扩展。

    图  11  2.5D机织混杂复合材料层间剪切受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  11.  Schematic diagram of interlaminar shear force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    (1) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有优异的耐高温性能。通过DMA测得该复合材料玻璃化转变温度Tg为304℃,当测试温度升至300℃时,其储能模量保留率仍有72.32%,表现出良好的热稳定性。

    (2) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有明显的温度效应。温度上升导致纤维/基体界面结合力减弱,复合材料的弯曲强度、弯曲模量和层间剪切强度逐渐下降,承载主体由纤维向树脂基体转变。

    (3) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的三点弯曲失效为压缩应力、拉伸应力和剪切应力耦合作用下的结果,整个破坏是一个从受压面外侧到受拉面内侧的渐进过程。弯曲载荷下,2.5D机织混杂复合材料的室温破坏模式以局部的纤维断裂和基体开裂为主,而高温破坏模式则以纤维/基体界面脱粘为主导。

    (4) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的层间剪切失效为层间剪切应力、弯曲应力、横向剪切应力和局部挤压应力多力耦合作用下的结果。剪切载荷下,2.5D机织混杂复合材料的室温破坏模式主要为分层破坏。而随着温度升高,树脂由脆性失效变为韧性失效,复合材料也因基体软化出现塑性变形,基体开裂、界面脱粘及分层破坏决定了材料的最终失效。

  • 图  1   单向(UD)-碳纤维增强树脂基复合材料(CFRP)切削加工机制:(a) 刀具与纤维夹角;(b) 微观切削模型;(c) 四种切削模式[28]

    θ—Cutting direction; Vc—Cutting speed; k—Fiber direction

    Figure  1.   Unidirectional (UD)-carbon fiber reinforced polymer (CFRP) cutting mechanism: (a) Angle between cutter and fiber; (b) Micro-cutting model; (c) Four cutting modes[28]

    图  2   CFRP切削热来源示意图[31]

    1, 2, 3—First, second, third deformation region

    Figure  2.   Schematic diagram of cutting heat source of CFRP[31]

    图  3   UD-CFRP钻削热传导模型[33]

    ω—Angular velocity; νf—Feed velocity of the drill; q1—Heat flux load which comes from the major cutting edges and chisel edge; q2—Heat flux load generated from the side edges; lx—CFRP length; ly—CFRP width; lz—CFRP thickness; d—Tool diameter

    Figure  3.   UD-CFRP drilling heat conduction model[33]

    图  4   CFRP切削热力耦合分析模型[46]

    S—Mises stress

    Figure  4.   Thermal-mechanical coupling analysis model of CFRP cutting[46]

    图  5   基于微结构的CFRP切削有限元模型[47]

    EHM—Equivalent homogeneous material; L1—Length of the first zone; L2—Length of the second zone; L3—Length of the third zone

    Figure  5.   Finite element model of CFRP cutting based on microstructure[47]

    图  6   有无超声振动辅助加工模拟结果对比:(a) 刚开始切削CFRP时;(b) 切削CFRP时[47]

    TEMP—Temperature/℃

    Figure  6.   Comparison of simulation results with or without ultrasonic vibration: (a) Start cutting CFRP; (b) During cutting CFRP[47]

    图  7   有限元研究主要类型分类:(a) (I) UD-CFRP[51];(II) 编织CFRP[50];(b) (III) 损伤预测[56];(IV) 温度预测[54]

    Figure  7.   Classification of main types of finite element research: (a) (I) UD-CFRP[51]; (II) Knitting CFRP[50]; (b) (III) Damage prediction[56]; (IV) Temperature prediction[54]

    图  8   CFRP钻孔时的二维热传导有限元模拟结果(高温区由尺寸标注,温度高于180°C):(a) 新刀具;(b) 磨损刀具[52]

    Figure  8.   Two-dimensional finite element simulation results of heat conduction during drilling with CFRP (The high temperature zone is marked by dimensions, the temperature is higher than 180 C): (a) New tool; (b) Wear the cutting tools[52]

    图  9   三种不同测温方法的实验原理图:(a) 刀具-工件热电偶法;(b) 工件嵌入热电偶法;(c) 热像仪测量法[61]

    PC—Personal computer

    Figure  9.   Experimental schematic diagram of three different temperature measurement methods: (a) Tool-workpiece thermocouple method; (b) Workpiece embedding thermocouple method; (c) Thermal imager measurement method[61]

    图  10   CFRP钻孔的主要损伤形式[12, 66]

    Figure  10.   Main damage forms of CFRP drilling holes[12, 66]

    图  11   CFRP钻出口热像图:(a) 实验所用刀具;(b) 钻出口处随钻孔深度变化的热像图(其中左侧使用常规刀具,右侧为新型刀具)[28]

    Figure  11.   Thermal images of CFRP drill hole: (a) Tool used in the experiment; (b) Thermal image of the drilling outlet with the change of drilling depth (In which conventional tools are used on the left side and new tools are used on the right side)[28]

    图  12   轨道钻孔及其刀具示意图[77]

    ap—Screw pitch of the helical path; D—Diameter of the peripheral cutting edges; e—Eccentricity of the helical path; d—Diameter of the milling part; R—Radius of the arc of the ODR tool; ODR—Orbital drilling and reaming

    Figure  12.   Schematic diagram of track drilling and its tools[77]

    图  13   刀具改进方法[66, 78, 84]

    CLS——Cutting lip of the sawtooth

    Figure  13.   Tool improvement method[66, 78, 84]

    图  14   进给速率和旋转速度对温度的影响:(a)两种钻头对比;(b)传统麻花钻;(c)具有锯齿结构的麻花钻[28]

    Figure  14.   Influence of feed rate and rotation speed on temperature: (a) Comparison of two kinds of drill bits; (b) Traditional twist drill; (c) Twist drill with sawtooth structure[28]

    图  15   最小润滑(MQL)辅助加工技术示意图:(a) 溢流润滑;(b) 最小润滑[95];(c) 最小润滑喷射方式[66]

    Figure  15.   Schematic diagram of minimum quantity lubrication (MQL) auxiliary processing technology: (a) Overflow lubrication; (b) Minimum lubrication[95]; (c) Minimum lubrication injection mode[66]

    图  16   CFRP钻孔实验装置:(a) 干钻;(b) 最小润滑辅助钻孔;(c) 液氮辅助钻孔;(d) 液化二氧化碳辅助钻孔[107]

    Figure  16.   CFRP drilling experimental device: (a) Dry drilling; (b) Minimum lubrication auxiliary drilling; (c) Liquid nitrogen assisted drilling; (d) Liquefied carbon dioxide assisted drilling[107]

    图  17   旋转超声椭圆振动加工原理:(a) 旋转超声振动加工;(b) 旋转超声椭圆振动加工;(c) 切屑排出示意图[22]

    vf—Feed speed; ns—Spindle speed; A—Vibration amplitude; H—Local section view H—H

    Figure  17.   Principle of rotary ultrasonic elliptical vibration machining: (a) Rotary ultrasonic vibration machining; (b) Rotary ultrasonic elliptical vibration processing; (c) Schematic diagram of chip discharge[22]

    表  1   切削热的数值模拟分析

    Table  1   Numerical simulation analysis of cutting heat

    Simulation scale Object Keyword Reference
    Micro-scale UD-CFRP Fiber orientation angle [41]
    UD-CFRP Ultrasonic vibration [43]
    UD-CFRP Temperature
    pretreatment
    [26]
    3D braided composites Thermal conductivity [44]
    3D braided composites Braiding angle [45]
    3D braided composites Elastic-plastic damage constitutive laws [46]
    UD-CFRP Stress concentration [47]
    Macro-scale CFRP Thermal damage area prediction [48]
    Tool Cutting tool structure
    design
    [49]
    CFRP, GFRP Temperature prediction [50]
    AFRP Temperature prediction [51]
    CFRP Intralaminar damage [52]
    下载: 导出CSV

    表  2   辅助加工控制温度研究

    Table  2   Study on control temperature of auxiliary machining

    Auxiliary method Object Subject Reference
    MQL CFRP/Ti6Al4V Torque, specific cutting energy, hole wall morphologies, burr [89]
    CFRP/Ti6Al4V Thrust force, delamination damage, tool wear, [90]
    CFRP torque, thrust force, delamination damage, hole diameter, roundness [91]
    LN2 CFRP Hole wall morphologies, hole wall surface roughness, tool wear, thrust force [92]
    CFRP, CFRPs Torque, thrust force, delamination damage, hole diameter, roundness [93]
    CFRPs Hole wall surface roughness, roundness, cylindricity, delamination damage [94]
    AFRP Thrust force, delamination damage, burr, ablation [95]
    LCO2 CFRP/Ti6Al4V Hole diameter, power consumption [96]
    CFRP Hole wall morphologies, hole wall surface roughness, torque [97]
    Air CFRP Burr, tear, tool wear [98]
    Ultrasonic vibration CFRPs Hole wall surface roughness, thrust force, torque, delamination damage, burr, tear [108]
    CFRP Thrust force [43]
    CFRPs Hole wall morphologies [22]
    CFRP Hole wall surface roughness, thrust force, delamination damage, burr, tear [110]
    下载: 导出CSV
  • [1]

    SHI Z Y, CUI P, LI X. A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2019,233(13):4508-4520. DOI: 10.1177/0954406219830732

    [2] 陈春姣, 包宏伟, 李燕, 等. 石墨烯增强铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(3):1248-1262.

    CHEN Chunjiao, BAO Hongwei, LI Yan, et al. Research progress of graphene reinforced copper matrix compo-sites[J]. Acta Materiae Compositae Sinica,2023,40(3):1248-1262(in Chinese).

    [3] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9):4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica,2022,39(9):4187-4195(in Chinese).

    [4]

    QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures,2019,210:339-347. DOI: 10.1016/j.compstruct.2018.11.056

    [5] 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6):526851.

    ZHAO Tian, LI Ying, ZHANG Chao, et al. Fundamental mechanical problems in high performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):526851(in Chinese).

    [6] 肖遥, 李东升, 吉康, 等. 大型复合材料航空件固化成型模具技术研究与应用进展[J]. 复合材料学报, 2022, 39(3):907-925.

    XIAO Yao, LI Dongsheng, JI Kang, et al. Research and application progress of curing tooling technology for large composite aeronautical components[J]. Acta Materiae Compositae Sinica,2022,39(3):907-925(in Chinese).

    [7] 罗云烽, 姚佳楠. 高性能热塑性复合材料在民用航空领域中的应用[J]. 航空制造技术, 2021, 64(16):93-102.

    LUO Yunfeng, YAO Jianan. Application of high-performance thermoplastic composites in civil aviation[J]. Aviation Manufacturing Technology,2021,64(16):93-102(in Chinese).

    [8] 陈冰, 徐虎, 王健, 等. 纤维增强复合材料磨削制孔加工技术研究进展[J]. 复合材料学报, 2023, 40(1): 13-37.

    CHEN Bing, XU Hu, WANG Jian, et al. Research progress of fiber reinforced composites by grinding technology for hole making[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 13-37(in Chinese).

    [9] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9):4179-4186.

    XING Liying, LI Yafeng, CHEN Xiangbao. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica,2022,39(9):4179-4186(in Chinese).

    [10] 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16):64-77.

    WANG Xianfeng, DUAN Shaohua, TANG Shanshan, et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology,2022,65(16):64-77(in Chinese).

    [11] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):27732797.

    GU Yizhuo, LI Min, LI Yanxia, et al. Progress on manufacturing technology and process theory of aircraft compo-site structure[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):27732797(in Chinese).

    [12] 张月欣, 杨明君, 刘耿, 等. CFRP的钻削加工研究现状[J]. 复合材料科学与工程, 2021(12):120-128.

    ZHANG Yuexin, YANG Mingjun, LIU Geng, et al. A review about drilling of CFRP[J]. Composites Science and Engi-neering,2021(12):120-128(in Chinese).

    [13] 鲍永杰, 高航, 梁延德, 等. 碳纤维/环氧树脂复合材料钻削温度场建模与试验[J]. 兵工学报, 2013, 34(7):846-852.

    BAO Yongjie, GAO Hang, LIANG Yande, et al. Modeling and experimental research on drilling temperature field of carbon fiber/epoxy reinforced composites[J]. Acta Armamentarii,2013,34(7):846-852(in Chinese).

    [14]

    XU J Y, LIN T Y, DAVIM J P. On the machining tempera-ture and hole quality of CFRP laminates when using diamond-coated special drills[J]. Journal of Composites Science, 2022, 6(2): 45.

    [15] 刘亚军, 李皓, 李士鹏, 等. 钛合金/CFRP叠层构件螺旋铣孔界面切削热研究[J]. 机械科学与技术, 2019, 38(9):1406-1413.

    LIU Yajun, LI Hao, LI Shipeng, et al. Investigation of cutting heat of interface in helical milling of titanium and carbon fiber reinforced plastic stack[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(9):1406-1413(in Chinese).

    [16] 杨国林, 董志刚, 康仁科, 等. 螺旋铣孔技术研究进展[J]. 航空学报, 2020, 41(7):623311.

    YANG Guolin, DONG Zhigang, KANG Renke, et al. Research progress of helical milling technology[J]. Acta Aeronautica et Astronautica Sinica,2020,41(7):623311(in Chinese).

    [17]

    MU J, XU J H, CHEN Y, et al. Experimental research on temperature of drilling CFRP with brazed diamond core drill[J]. Materials Science Forum, 2014, 3256(800-801): 776-781.

    [18] 蔡建国, 林正英. C/E复合材料高速钻削温度测量研究[J]. 机械制造与自动化, 2015, 44(2):201-202, 214.

    CAI Jianguo, LIN Zhengying. Research on temperature measurement of high-speed drilling of C/E composites[J]. Machinery Manufacturing and Automation,2015,44(2):201-202, 214(in Chinese).

    [19] 陈文成, 王宏晓, 段玉岗, 等. 温变特性对C/E复合材料制孔质量影响的试验研究[J]. 机械制造, 2019, 57(8):84-90.

    CHEN Wencheng, WANG Hongduan, DUAN Yugang, et al. Experimental study on the influence of temperature change characteristics on the hole quality of C/E compo-sites[J]. Machinery Manufacturing,2019,57(8):84-90(in Chinese).

    [20]

    SANTIUSTE C, DIAZ-ALVAREZ J, SOLDANI X, et al. Modelling thermal effects in machining of carbon fiber reinforced polymer composites[J]. Journal of Reinforced Plastics & Composites,2011,33(8):758-766.

    [21] 王福吉, 殷俊伟, 贾振元, 等. CFRP复合材料铣削力、温度及表层损伤分析[J]. 机械工程学报, 2018, 3(3):186-195.

    WANG Fuji, YIN Junwei, JIA Zhenyuan, et al. Measurement and analysis of cutting force, temperature and cutting-induced top-layer damage in edge trimming of CFRPs[J]. Journal of Mechanical Engineering,2018,3(3):186-195(in Chinese).

    [22]

    GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture,2017, 123:160-170.

    [23] 徐锦泱. 碳纤维增强树脂基复合材料钻削缺陷研究进展[J]. 航空制造技术, 2022, 65(22):24-33.

    XU Jinyang. Research advances in drilling-induced defects of carbon fiber reinforced polymers[J]. Aeronautical Manufacturing Technology,2022,65(22):24-33(in Chinese).

    [24] 吴小飞, 马保吉, 高红红, 等. 基于多目标优化的碳纤维复合材料钻削参数优化[J]. 工具技术, 2022, 56(9):43-47.

    WU Xiaofei, MA Baoji, GAO Honghong, et al. Optimization of drilling parameters for carbon fibre reinforced plastics based on multi-objective optimization[J]. Tool Technology,2022,56(9):43-47(in Chinese).

    [25]

    HOU G Y, ZHANG K F, FAN X T, et al. Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling[J]. Composite Structures,2020,231:111456. DOI: 10.1016/j.compstruct.2019.111456

    [26] 李丰辰, 齐振超, 陈文亮, 等. CF/PEEK钻削热历史对孔承载能力的影响规律研究[J]. 工具技术, 2022, 56(12):56-63.
    [27] 刘书暖, 夏文强, 王宁, 等. CFRP/钛合金叠层构件低温钻削的轴向力与成孔质量研究[J]. 航空制造技术, 2019, 62(13):82-86.

    LIU Shunuan, XIA Wenqiang, WANG Ning, et al. Research on thrust force and hole 1uality of drilling CFRP/Ti stacks in low temperature[J]. Aeronautical Manufacturing Technology,2019,62(13):82-86(in Chinese).

    [28]

    SHU L M, LI S H, FANG Z L, et al. Study on dedicated drill bit design for carbon fiber reinforced polymer drilling with improved cutting mechanism[J]. Composites Part A: Applied Science and Manufacturing,2020,142:106259.

    [29] 邹适, 李树健, 李鹏南, 等. CFRP钻削过程的切削热研究进展[J]. 宇航材料工艺, 2020, 50(4):13-18.

    ZOU Shi, LI Shujian, LI Pengnan, et al. Research progress of cutting heat in drilling process of CFRP[J]. Aerospace Materials and Technology,2020,50(4):13-18(in Chinese).

    [30]

    SEYEDBEHZAD G, GILBERT L, JEAN-FRANÇOIS C. Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic[J]. Journal of Composite Materials,2016,50(8):1007-1142. DOI: 10.1177/0021998315586078

    [31]

    HAN L, ZHANG J J, LIU Y, et al. Finite element investigation on pretreatment temperature-dependent orthogonal cutting of unidirectional CFRP[J]. Composite Structures,2021,278:114678. DOI: 10.1016/j.compstruct.2021.114678

    [32]

    WANG F J, YIN J W, MA J W, et al. Heat partition in dry orthogonal cutting of unidirectional CFRP composite lami-nates[J]. Composite Structures,2018,197:28-38.

    [33]

    BAO Y J, WANG Y Q, GAO H, et al. Investigation on temperature field of unidirectional carbon fiber/epoxy composites during the drilling process[J]. Journal of Central South University,2019,26(10):2717-2728. DOI: 10.1007/s11771-019-4208-2

    [34] 杨帆, 王福吉, 贾振元. CFRP/钛合金叠层钻削中的温度场计算研究[J]. 机电工程, 2019, 36(12):1261-1265.

    YANG Fan, WANG Fuji, JIA Zhenyuan. Temperature field calculation of CFRP/Ti alloy laminated drilling[J]. Electromechanical Engineering,2019,36(12):1261-1265(in Chinese).

    [35]

    LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture,2014,86:89-103. DOI: 10.1016/j.ijmachtools.2014.06.008

    [36]

    SIKIRU O I, SAHEED O O, HOM N D. Thermo-mechani-cal modelling of FRP cross-ply composite laminates drilling: Delamination damage analysis[J]. Composites Part B: Engineering,2017,108:45-52. DOI: 10.1016/j.compositesb.2016.09.100

    [37] 贾振元, 毕广健, 王福吉, 等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23):199-208. DOI: 10.3901/JME.2018.23.199

    JIA Zhenyuan, BI Guangjian, WANG Fuji, et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering,2018,54(23):199-208(in Chinese). DOI: 10.3901/JME.2018.23.199

    [38]

    FATTAHI M Z, KISHAWY H A. Prediction of critical thrust force generated at the onset of delamination in machining carbon reinforced composites[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5-8):2751-2759. DOI: 10.1007/s00170-019-03517-4

    [39]

    LIU Y, LI Q N, QI Z C, et al. Rapid prediction of thrust force coupling scale-span model and revised ANN in drilling CFRPs[J]. The International Journal of Advanced Manufacturing Technology,2021,116:2255-2268. DOI: 10.1007/s00170-021-07491-8

    [40]

    LIU Y, QI Z C, CHEN W L, et al. An approach to design high-performance unidirectional CFRPs based on a new sensitivity analysis model[J]. Composite Structures,2019,224:111078. DOI: 10.1016/j.compstruct.2019.111078

    [41]

    LIU Y, LI Q N, QI Z C, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. DOI: 10.1016/j.compstruct.2021.114710

    [42]

    DU J G, GENG M, MING W Y, et al. Simulation machining of fiber-reinforced composites: A review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1- 2): 1-15.

    [43]

    LIU Y, QI Z C, CHEN W L, et al. Mesh size optimization of unidirectional fiber-reinforced composites model for precisely characterizing the effective elastic property[J]. Journal of Material Engineering and Performance,2020,29:2701-2719.

    [44]

    LIU Y, PAN Z T, LI Q N, et al. Comparative analysis of dynamic progressive failure of CFRPs using the scale-span and macroscopic modeling method in drilling[J]. Engi-neering Fracture Mechanics,2022,268:108434. DOI: 10.1016/j.engfracmech.2022.108434

    [45] 齐振超, 李丰辰, 王二化. 基于热力耦合仿真的CFRP直角切削机理研究[J]. 工具技术, 2019, 53(10):36-41.

    QI Zhenchao, LI Fengchen, WANG Erhua. Research on orthogonal cutting mechanism of CFRP based on thermo-mechanical couple simulation[J]. Tool Technology,2019,53(10):36-41(in Chinese).

    [46]

    GAO C, XIAO J, XU J, et al. Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation[J]. The International Journal of Advanced Manufacturing Technology,2016,83(5-8):1113-1125. DOI: 10.1007/s00170-015-7592-2

    [47]

    XU W X, ZHANG L C. Heat effect on the material removal in the machining of fibre-reinforced polymer compo-sites[J]. International Journal of Machine Tools and Manufacture,2019,140:1-11. DOI: 10.1016/j.ijmachtools.2019.01.005

    [48]

    DONG K, ZHANG J J, JIN L M, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures,2016,143:9-22. DOI: 10.1016/j.compstruct.2016.02.029

    [49]

    ZHAI J J, CHENG S, ZENG T, et al. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method[J]. Composite Structures,2017,176:664-672. DOI: 10.1016/j.compstruct.2017.05.064

    [50]

    HE C W, GE J R, ZHANG B B, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature[J]. Composites Science and Technology,2020,196:108230. DOI: 10.1016/j.compscitech.2020.108230

    [51]

    CHENG H, GAO J Y, KAFKA O L, et al. A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling[J]. Composites Science and Technology,2017,153:18-31. DOI: 10.1016/j.compscitech.2017.09.028

    [52]

    DÍAZ-ÁLVAREZ J, OLMEDO A, SANTIUSTE C, et al. Theoretical estimation of thermal effects in drilling of woven carbon fiber composite[J]. Materials,2014,7(6):4442-4454. DOI: 10.3390/ma7064442

    [53]

    SADEK A, SHI B, MESHREKI M, et al. Prediction and control of drilling-induced damage in fibre-reinforced polymers using a new hybrid force and temperature modelling approach[J]. CIRP Annals,2015,64(1):89-92. DOI: 10.1016/j.cirp.2015.04.074

    [54]

    SORRENTINO L, TURCHETTA S, BELLINI C. In process monitoring of cutting temperature during the drilling of FRP laminate[J]. Composite Structures,2017,168:549-561. DOI: 10.1016/j.compstruct.2017.02.079

    [55]

    BAO Y J, HAO W, GAO H, et al. Numerical and experimental investigations on temperature distribution of plain-woven aramid fiber-reinforced plastics composites with low-mild spindle velocities[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 613-622.

    [56]

    KUBHER S, GURURAJA S, ZITOUNE R. Coupled thermo-mechanical modeling of drilling of multi-directional polymer matrix composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106802. DOI: 10.1016/j.compositesa.2022.106802

    [57]

    KEVIN K, GARRET E O. On the relationship between cutting temperature and workpiece polymer degradation during CFRP edge trimming[J]. Procedia CIRP,2016,55:170-175. DOI: 10.1016/j.procir.2016.08.041

    [58]

    SORRENTINO L, TURCHETTA S, COLELLA L, et al. Analysis of thermal damage in FRP drilling[J]. Procedia Engineering,2016,167:206-215. DOI: 10.1016/j.proeng.2016.11.689

    [59]

    MERINO-PÉREZ J L, ROYER R, AYVAR-SOBERANIS S, et al. On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation[J]. Composite Structures,2015,123:161-168. DOI: 10.1016/j.compstruct.2014.12.033

    [60]

    LOJA M A R, ALVES M S F, BRAGANÇA I M F, et al. An assessment of thermally influenced and delamination-induced regions by composites drilling[J]. Composite Structures,2018,202:413-423. DOI: 10.1016/j.compstruct.2018.02.046

    [61]

    TAKESHI Y, TAKAYUKI O, HIROYUKI S. Temperature measurement of cutting tool and machined surface layer in milling of CFRP[J]. International Journal of Machine Tools and Manufacture,2013,70:63-69. DOI: 10.1016/j.ijmachtools.2013.03.009

    [62] 付鹏强, 蒋银红, 王义文, 等. CFRP制孔加工技术的研究进展与发展趋势[J]. 航空材料学报, 2019, 39(6):32-45.

    FU Pengqiang, JIANG Yinhong, WANG Yiwen, et al. Research progress and perspective trend of drilling technology for carbon fiber reinforced polymer[J]. Journal of Aeronautical Materials,2019,39(6):32-45(in Chinese).

    [63] 蔡建国, 林正英. 碳纤维复合材料钻削温度对孔壁微观形貌的影响分析研究[J]. 机械设计与制造工程, 2017, 46(7):69-73.

    CAI Jianguo, LIN Zhengying. The influence analysis of carbon fiber reinforced composites drilling temperature on morphology of hole wall[J]. Machine Design and Manufacturing Engineering,2017,46(7):69-73(in Chinese).

    [64]

    CHRISTOPHE R, GERARD P, FREDERIC R, et al. Tool wear monitoring and hole surface quality during CFRP drilling[J]. Procedia CIRP,2014,13:163-168. DOI: 10.1016/j.procir.2014.04.028

    [65] 王春浩, 李鹏南, 李树健, 等. CFRP钻削加工过程的分层缺陷研究进展[J]. 兵器材料科学与工程, 2019, 42(6):109-115.

    WANG Chunhao, LI Pengnan, LI Shujian, et al. Research progress on delamination defect in CFRP cutting process[J]. Ordnance Material Science and Engineering,2019,42(6):109-115(in Chinese).

    [66]

    GAO T, LI C H, WANG Y Q, et al. Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression[J]. Composite Structures,2022,286:115232. DOI: 10.1016/j.compstruct.2022.115232

    [67]

    LUIGI S, DAVI S, MARCO D, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B: Engineering,2017,113:100-110. DOI: 10.1016/j.compositesb.2017.01.010

    [68]

    XAVIER G, VINCENT P, FRÉDÉRIQUE T, et al. About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite[J]. Composites Part B: Engineering,2016,95:386-394. DOI: 10.1016/j.compositesb.2016.03.068

    [69]

    UM H J, HWANG Y T, CHOI K H, et al. Effect of crystalli-nity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions[J]. Composites Science and Technology,2021,207:108745. DOI: 10.1016/j.compscitech.2021.108745

    [70]

    SIDDHARTH J, KRISHNA R, BALAN A S S. A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP[J]. Journal of Materials Processing Tech,2018,262:521-531. DOI: 10.1016/j.jmatprotec.2018.07.026

    [71]

    FU R, JIA Z Y, WANG F J, et al. Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography[J]. International Jour-nal of Machine Tools and Manufacture,2018,135:24-37. DOI: 10.1016/j.ijmachtools.2018.08.002

    [72]

    GE J, CATALANOTTI G, FALZON B G, et al. Towards understanding the hole making performance and chip formation mechanism of thermoplastic carbon fibre/polyetherketoneketone (CF/PEKK) composite[J]. Composites Part B: Engineering, 2022, 234: 109752.

    [73]

    MERINO-PÉREZ J L, ROYER R, MERSON E, et al. Influence of workpiece constituents and cutting speed on the cutting forces developed in the conventional drilling of CFRP composites[J]. Composite Structures,2016,140:621-629. DOI: 10.1016/j.compstruct.2016.01.008

    [74] 伍俏平, 赵恒, 王煜, 等. 纤维增强复合材料制孔刀具研究现状与展望[J]. 兵器材料科学与工程, 2018, 41(6):113-118.

    WU Qiaoping, ZHAO Heng, WANG Yan, et al. Research status and perspectives of cutting tools for drilling fibre reinforced composites[J]. Weapon Materials Science and Engineering,2018,41(6):113-118(in Chinese).

    [75]

    NORBERT G J, PAULO D, TIBOR S. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105552. DOI: 10.1016/j.compositesa.2019.105552

    [76] 陈浩, 李鹏南, 唐思文, 等. 麻花钻几何参数对碳纤维复合材料钻削性能的影响[J]. 宇航材料工艺, 2015, 45(3):63-67.

    CHEN Hao, LI Pengnan, TANG Siwen, et al. Effects of the geometrical parameter of twist drill on the drilling properties of carbon fiber reinforced plastics[J]. Aerospace Materials Technology,2015,45(3):63-67(in Chinese).

    [77]

    KONG L H, GAO D, LU Y, et al. Novel orbital drilling and reaming tool for machining holes in carbon fiber-reinforced plastic (CFRP) composite laminates[J]. The International Journal of Advanced Manufacturing Technology,2020,110(3-4):977-988. DOI: 10.1007/s00170-020-05928-0

    [78]

    XU J Y. A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800 S/250 F CFRP[J]. Composite Structures,2014,117:71-82. DOI: 10.1016/j.compstruct.2014.06.034

    [79] 伍俏平, 刘平, 邓朝晖, 等. 基于超细晶硬质合金钻头的AFRP钻削性能[J]. 复合材料学报, 2017, 34(10):2246-2253.

    WU Qiaoping, LIU Ping, DENG Zhaohui, et al. Drilling performance of ultrafine cemented carbide drill inmachining aramid fiber reinforce polymer composites[J]. Acta Materiae Compositae Sinica,2017,34(10):2246-2253(in Chinese).

    [80]

    GAUGEL S, SRIPATHY P, HAEGER A, et al. A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers(CFRP)[J]. Composite Structures,2016,155:173-183. DOI: 10.1016/j.compstruct.2016.08.004

    [81]

    XU J, EL MANSORI M. Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks[J]. Composite Structures,2016,157:461-482. DOI: 10.1016/j.compstruct.2016.07.025

    [82]

    REDOUANE Z, NICOLAS C, COLLOMBET F, et al. Temperature and wear analysis in function of the cutting tool coating when drilling of composite structure: In situ measurement by optical fiber[J]. Wear,2017, 376-377:1849-1858.

    [83] 宿友亮, 孟志坚, 郜雪楠, 等. CFRP切削加工中刀具磨损研究进展[J/OL]. 表面技术: 1-20[2023-05-30]. .

    SU Youliang, MENG Zhijian, GAO Xuenan, et al. Research progress of tool wear in cutting of CFRP[J/OL]. Surface Technology: 1-20[2023-05-30]. (in Chinese).

    [84]

    JIA Z Y, FU R, NIU B, et al. Novel drill structure for damage reduction in drilling CFRP composites[J]. International Journal of Machine Tools & Manufacture,2016,110:55-65.

    [85] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):3013-3016.

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):3013-3016(in Chinese).

    [86]

    CHEN W C. Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) compo-site laminates[J]. International Journal of Machine Tools and Manufacture,1997,37(8):1097-1108. DOI: 10.1016/S0890-6955(96)00095-8

    [87]

    WANG H J, SUN J, ZHANG D D, et al. The effect of cutting temperature in milling of carbon fiber reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2016,91:380-387. DOI: 10.1016/j.compositesa.2016.10.025

    [88]

    HOU G Y, LUO B, ZHANG K F, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature cont1 rolled orthogonal cutting experiment[J]. Composite Structures,2021,268:113967. DOI: 10.1016/j.compstruct.2021.113967

    [89] 王福吉, 郭会彬, 贾振元, 等. 玻璃纤维增强聚丙烯复合材料制孔损伤[J]. 复合材料学报, 2018, 35(8):2023-2031.

    WANG Fuji, GUO Huibing, JIA Zhenyuan, et al. Drilling damage of glass fiber reinforced polypropylene compo-sites[J]. Acta Materiae Compositae Sinica,2018,35(8):2023-2031(in Chinese).

    [90]

    XU J Y, HUANG X H, PAULO D J, et al. On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites[J]. Polymer Composites, 2020, 41(9): 3649-3663.

    [91] 胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(4):61-70.

    HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Fabrication of thermoplastic composite components and their application in aerospace[J]. Astronautical Systems Engi-neering Technology,2020,4(4):61-70(in Chinese).

    [92] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9):4274-4285. DOI: 10.13801/j.cnki.fhclxb.20220809.008

    ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4274-4285(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220809.008

    [93] 刘彬, 安卫龙, 倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术, 2021, 64(22):80-90.

    LIU Bing, AN Weilong, NI Nannan. Application status of thermoplastic composite materials in foreign engineering[J]. Aeronautical Manufacturing Technology,2021,64(22):80-90(in Chinese).

    [94] 张加波, 张开虎, 范洪涛, 等. 纤维复合材料激光加工进展及航天应用展望[J]. 航空学报, 2022, 43(4):525735. DOI: 10.7527/j.issn.1000-6893.2022.4.hkxb202204010

    ZHANG Jiabo, ZHANG Kaihu, FAN Hongtao, et al. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525735(in Chinese). DOI: 10.7527/j.issn.1000-6893.2022.4.hkxb202204010

    [95]

    WANG X M, LI C H, ZHANG Y B, et al. Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives[J]. Journal of Manufacturing Processes,2020,59:76-97. DOI: 10.1016/j.jmapro.2020.09.044

    [96]

    ZHANG Y B, LI H N, LI C H, et al. Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms[J]. Friction,2022,10(6):803-841. DOI: 10.1007/s40544-021-0536-y

    [97]

    XU J Y, JI M, CHEN M, et al. Experimental investigation on drilling machinability and hole quality of CFRP/Ti6 Al4 V stacks under different cooling conditions[J]. The International Journal of Advanced Manufacturing Technology,2020,109(5-6):1527-1539. DOI: 10.1007/s00170-020-05742-8

    [98]

    XU J Y, JI M, PAULO D J, et al. Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills[J]. Composite Structures,2020,234(C):111727.

    [99]

    ARJUN N, ALPER U, JAWAHIR I S. An investigation of process performance when drilling carbon fiber reinforced polymer (CFRP) composite under dry, cryogenic and MQL environments[J]. Procedia Manufacturing,2020,43(C):551-558.

    [100]

    GÜLTEKIN B, YORUK A S, UGUR K, et al. Impact of cryogenic condition and drill diameter on drilling performance of CFRP[J]. Applied Sciences, 2017, 7(7): 667.

    [101]

    MARCELO F B, IGOR B, FRANCISCO DE A T, et al. Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers[J]. Composite Structures,2020,251:112625. DOI: 10.1016/j.compstruct.2020.112625

    [102]

    NAVNEET K, FRANCI P, CHETAN A, et al. Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility[J]. Measurement,2020,154(C):107504.

    [103] 王晋宇, 刘海波, 刘阔, 等. 芳纶纤维增强树脂复合材料液氮冷却钻孔试验[J]. 复合材料学报, 2020, 37(1):89-95.

    WANG Jinyu, LIU Haibo, LIU Kuo, et al. Experiment of liquid nitrogen cooling drilling test of aramid fiber-reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(1):89-95(in Chinese).

    [104]

    RODRÍGUEZ A, CALLEJA A, DE LACALLE L N LÓPEZ, et al. Drilling of CFRP-Ti6 Al4 V stacks using CO2-cryogenic cooling[J]. Journal of Manufacturing Processes,2021,64:58-66. DOI: 10.1016/j.jmapro.2021.01.018

    [105] 邹凡, 王贤锋, 张烘州, 等. 超临界二氧化碳低温铣削CFRP复合材料试验研究[J]. 航空制造技术, 2021, 64(19):14-19.

    ZOU Fan, WANG Xianfeng, ZHANG Hongzhou, et al. Experimental investigation on milling characteristic of CFRP composites under supercritical carbon dioxide based cryogenic environment[J]. Aeronautical Manufacturing Technology,2021,64(19):14-19(in Chinese).

    [106] 王福吉, 成德, 赵猛, 等. 冷却空气流向对CFRP制孔刀具磨损及孔质量的影响[J]. 复合材料学报, 2019, 36(2):410-417.

    WANG Fuji, CHENG De, ZHAO Meng, et al. Influence of cooling air direction on tool wear and hole quality in CFRP drilling[J]. Acta Materiae Compositae Sinica,2019,36(2):410-417(in Chinese).

    [107]

    IQBAL A, ZHAO G L, ZAINI J, et al. CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication[J]. Composite Structures,2021,267:113916. DOI: 10.1016/j.compstruct.2021.113916

    [108] 李远霄, 焦锋, 张世杰, 等. 高低频复合振动钻削CFRP/钛合金叠层结构试验[J]. 航空学报, 2021, 42(10):524802.

    LI Yuanxiao, JIAO Feng, ZHANG Shijie, et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):524802(in Chinese).

    [109] 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4):52558. DOI: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007

    PENG Zhenlong, ZHANG Xiangyu, ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):52558(in Chinese). DOI: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007

    [110] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):62330.

    ZHAO Bo, LI Pengtao, ZHANG Cunying, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica,2020,41(2):62330(in Chinese).

    [111]

    SADEK A, ATTIA M H, MESHREKI M, et al. Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates[J]. CFRP Annals-Manufacturing Technology,2013,62(1):91-94. DOI: 10.1016/j.cirp.2013.03.097

    [112]

    OLIVER P, EKKARD B. Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6 Al4 V stack material[J]. Procedia CIRP,2014,14(14):142-147.

    [113] 张世杰, 焦锋, 李远霄, 等. 碳纤维复合材料/钛合金叠层结构高低频复合振动钻削试验[J]. 机械设计与研究, 2020, 36(6):120-124, 129.

    ZHANG Shijie, JIAO Feng, LI Yuanxiao, et al. Experimental study on high and low frequency compound vibration drilling of carbon fiber reinforced plastic/titanium alloy laminated structure[J]. Machine Design and Research,2020,36(6):120-124, 129(in Chinese).

    [114] 陈冒风, 张臣, 方军, 等. 振动辅助钻削对CFRP/钛合金叠层结构孔径阶差影响规律实验研究[J]. 宇航材料工艺, 2022, 52(3):88-93.

    CHEN Maofeng, ZHANG Cheng, FANG Jun, et al. Experimental study on the influence of vibration-assisted drilling on CFRP/titanium alloy laminated structures[J]. Aerospace Materials Technology,2022,52(3):88-93(in Chinese).

    [115] 谢大叶, 孙忠海, 刘标. CFRP/Ti叠层材料低频振动辅助钻削时不同参数对刀具磨损的影响[J]. 工具技术, 2021, 55(9):88-91.

    XIE Daye, SUN Zhonghai, LIU Biao. Effects of different parameters on tool wear during low frequency vibration assisted drilling of CFRP/Ti laminates[J]. Tool Technology,2021,55(9):88-91(in Chinese).

    [116]

    LIU Y, LI Q N, QI Z C, et al. Defect suppression mecha-nism and experimental study on longitudinal torsional coupled rotary ultrasonic assisted drilling of CFRPs[J]. Journal of Manufacturing Processes,2021,70:177-192. DOI: 10.1016/j.jmapro.2021.08.042

    [117]

    LIU Y, PAN Z T, LI Q N, et al. Experimental and scale-span numerical investigations in conventional and longitudi-nal torsional coupled rotary ultrasonic assisted drilling of CFRPs[J]. The International Journal of Advanced Manufacturing Technology,2022,119:1707-1724. DOI: 10.1007/s00170-021-08286-7

    [118] 李树健, 陈蓉, 李常平, 等. 一种超声超低温冰层支撑辅助CFRP钻削方法[J]. 复合材料学报, 2022, 39(3):1044-1054.

    LI Shujian, CHEN Rong, LI Changping, et al. A method of CFRP drilling assisted by ultrasonic, cryogenic tempera-ture and ice support[J]. Acta Materiae Compositae Sinica,2022,39(3):1044-1054(in Chinese).

  • 期刊类型引用(1)

    1. 李新娅,王宁,卢佳浩,张鹏,夏兆鹏,侯耒. 基于改进Weibull模型的高强缝合锚钉缝线强度预测. 现代纺织技术. 2024(06): 52-60 . 百度学术

    其他类型引用(1)

  • 目的 

    明晰纤维增强复合材料(Fiber Reinforced Composites,简称FRC)切削热的形成机制、精确测量方法、降低钻削热和减少制孔损伤等研究,无论是对进行钻削机制的研究、刀具磨损机制的探讨,还是刀具的设计与制造、加工参数的选择及加工表面质量的控制等均起着至关重要的作用。本文对国内外FRC钻削过程相关研究进行系统性的整理与分析,概述了近年来关于FRC钻削过程产生的切削热的研究,主要包含钻削热理论研究、钻削热对加工质量的影响研究、温度的影响因素与辅助加工控制钻削热方法研究三个方面的分析与总结,最后探讨并总结了当前对FRC钻削热研究存在的问题及今后研究的发展趋势。

    方法 

    通过对近年来FRC钻削热相关研究文献的整理归纳,将全文的综述研究内容主要做如下分类处理:1)基于数学推导与有限元模拟的钻削热理论研究,其内容主要包含了钻削热形成机制、热传导与损伤预测和基于数值模拟分析的切削热分析;2)钻削热对加工质量的影响研究,其内容主要为钻削温度对毛刺、分层、表面粗糙度、撕裂等损伤的影响;3)钻削热的影响因素研究,其内容主要为刀具对钻削温度影响、加工参数对钻削温度影响、材料性能等其他因素对钻削温度影响;4)钻削温度的辅助控制方法研究,其内容主要为最小润滑辅助加工控制钻削温度、低温冷却辅助钻削加工控制钻削温度、振动辅助钻削加工控制钻削温度。

    结果 

    从近年来FRC钻削热相关研究文献可以看出,研究钻削热的方法主要有试验、解析法和基于数值模拟的有限元法(Finite Element Method,简称FEM)。1)关于FRC钻孔切削热理论的研究内容主要集中在通过仿真及实验相结合的方法探究UD-FRC的切削去除机制、切削力、切削温度以及切屑的宏观形貌观察上。其中,切削热形成机制、钻削热分配问题、温度场模型是主要研究内容;2)为了获取更准确的FRC钻削热数据,对FRC钻削测温方法主要有刀具-工件热电偶法、工件嵌入热电偶法和热像仪测温法三种方法;3)在钻削热对制孔质量影响研究方面,已经有大量研究说明了钻削温度对毛刺、分层、表面粗糙度、撕裂等损伤的影响;4)在钻削温度影响因素研究方面,进给量和转速是能够显著改变钻削温度、影响制孔质量的主要影响因素,而改变刀具结构、刀具材料、刀具涂层和辅助加工方法则是有效降低钻削温度的途径;5)能够降低钻削温度的辅助加工技术主要有最小润滑辅助钻削加工、低温冷却辅助钻削加工和振动辅助钻削加工。

    结论 

    虽然国内外学者在FRC钻孔加工过程中热量的产生及其控制策略方面开展了一定的研究,但着眼于有效提高加工质量和优化加工工艺方面仍存在一定的挑战,具体可描述为:1)FRC的钻削损伤形成过程是复杂的热力耦合作用形成的,需建立完善的考虑热力耦合作用的FRC钻削损伤形成理论;2)由于计算机的算力有限,对FRC钻削过程的能够较精准模拟机械损伤或热传导行为,需要完善的理论来指导多尺度的FRC热力耦合钻削模型的建立。3)FRC的钻削损伤形成受多个因素影响,需要建立“刀具-工艺-控制策略-数据库”一体化研究方法,实现刀具、工艺参数和辅助控制方法的快速选择。4)当前研究中采用单一的辅助FRC钻削的加工技术存在一定局限性,需要优化新型复合振动辅助加工策略与新工艺相互结合的钻削热控制方法。

图(17)  /  表(2)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  530
  • PDF下载量:  84
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-01-22
  • 录用日期:  2023-02-18
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-08-14

目录

/

返回文章
返回