Abstract:
In order to study the influence of the short steel fiber on the mechanical properties of carbon textile reinforced concrete (C-TRC) under low-cycle fatigue loading, low-cycle fatigue loading test and quasi-static tensile tests before and after fatigue loading were conducted on specimens with various contents of short steel fiber (0vol%, 0.5vol% and 1.0vol%) by a universal testing machine, and distributions of crack and strain were obtained by digital image correlation (DIC) method. The results show that the addition of short steel fiber can increase the tensile strength, the Young’s modulus and toughness of C-TRC, reduce the energy dissipation and residual accumulated strain and increase the crack number and crack width. Fatigue load can reduce the rigidity, tensile strength, peak strain, and toughness, and accelerate the destruction of C-TRC. The addition of short steel fiber can reduce the property degradation caused by fatigue loading, and the 0.5vol% addition has the best enhancement effect. The strength degradation model was modified based on the existing residual strength-residual stiffness coupled model and experimental data, The modified model is used to fit the experimental data and be compared with the existing model. The results show that the modified model is more consistent with the experimental data. These findings will be available for the fatigue performance evaluation of textile reinforced concrete (TRC).