Abstract:
Functional emulsion is one of the hot topics because of their functional factors. Bio-macromolecules hyaluronic acid (HA), lysozyme (Lys) and trace metal element zinc can self-assemble to prepare Lys-Zn
2+/HA colloidal particles by electrostatic interaction. The effects of different raw material concentration on the properties of colloidal particles were studied to obtain colloidal nanoparticles under optimal assembly conditions. The size and morphology of the colloidal particles were characterized by nanometer particle size analyzer and scanning electron microscope. The results show that the formed colloidal particles have a spherical structure with a particle size of about 300 nm. The colloidal particles have surface activity and can be reassembled at the oil (containing fat-soluble vitamin D3)-water interface to stabilize oil-in-water functional Pickering emulsions. The effects of pH and salt concentration on the properties and emulsifying properties of colloidal particles were investigated in detail. The sustained release properties of the emulsion to trace metals and vitamin D3 functional factors were studied with the optimum emulsion performance. The results show that the emulsion has a certain sustained-release performance for both water-soluble and fat-soluble functional factors and has potential applications in the fields of food, medicine and cosmetics.