过渡金属化合物构筑热转化木材及其功能实践研究进展

Construction and functionality of heat conversion wood composite materials based on transition metal compounds

  • 摘要: 热能在社会活动中扮演着不可或缺的角色并存在多种转化形式,过渡金属化合物(Transition metal compound,TMC)因其强关联电子体系和固有的电荷、自旋、轨道等自由度和有序相之间存在着竞争与共存关系,可以在光、电、磁和热能之间实现高效转化。然而,以粉末和晶体形式存在的TMC在使用过程中会出现易氧化聚合、体积变化、转化热能易消散及收集困难等问题,限制其热转化效率。木材具有天然的层级孔隙结构和稳定的力学支撑,借助木材中的化学组分可以与TMC形成共价键、离子键、氢键、范德华力等结合方式,促使TMC均匀负载至木材微纳表面或多孔结构中,形成TMC@木材复合材料。此外,木材具有优异的热管理能力,能够调节热能以提高热转化效率。本文基于木材的木质—纤维素大分子网络构造,详细讨论了TMC与实体木材、脱木质素木材、碳化木材的构筑方法和界面结合机制,进一步分析了基于TMC的非辐射衰变、弛豫损耗和金属-绝缘体转变的热转化机制,概述了TMC@木质复合材料在海水淡化、油水分离、建筑节能和火灾预警领域的功能应用。最后,分析了当前基于TMC构建热转化木材的优势和所面临的挑战,以期为木材的先进功能和能量转化提供一定的思路。

     

    Abstract: Thermal energy plays an indispensable role in social activities and can be transformed among various energy sources. Transition metal compound (TMC) enables the efficient conversion of light, electrical and magnetic energy into thermal energy due to the competition and coexistence between its strongly correlated electronic systems and inherent charge, spin, orbital and other degree of freedom and ordered phase. However, used in the form of powder and crystal, TMC owns the problems of oxidation polymerization, volume change, high heat dissipation and collection difficulties, which limits its heat conversion efficiency. Wood has natural hierarchical pore structure and could supply stable mechanical support for TMC. TMC can be uniformly loaded into wood micro-nano surfaces or porous structures by forming covalent bond, ionic bond, hydrogen bond, van der Waals forces with the chemical components of the wood to form TMC@wood composite materials. In addition, wood's excellent thermal management ability can regulate thermal energy to improve heat conversion efficiency. Based on the lign-cellulosic macromolecular network configuration of wood, we discussed the combination method and interfacial binding mechanism of TMC with raw wood, delignification wood and carbonized wood. We further discussed the thermal transformation mechanisms of non-radiative relaxation, relaxation loss and metal-insulator transition of TMC, the functional applications of TMC@wood composite materials in the fields of desalination, oil-water separation, building energy conservation and fire warning are presented. Finally, in view of providing ideas for advanced functionalization and energy conversion of wood, the current advantages and challenges of thermal conversion of TMC@wood are summarized.

     

/

返回文章
返回