Loading [MathJax]/jax/output/SVG/jax.js

过渡金属化合物构筑热转化木材及其功能实践研究进展

孙思佳, 潘明珠

孙思佳, 潘明珠. 过渡金属化合物构筑热转化木材及其功能实践研究进展[J]. 复合材料学报, 2023, 40(6): 3218-3234. DOI: 10.13801/j.cnki.fhclxb.20230103.002
引用本文: 孙思佳, 潘明珠. 过渡金属化合物构筑热转化木材及其功能实践研究进展[J]. 复合材料学报, 2023, 40(6): 3218-3234. DOI: 10.13801/j.cnki.fhclxb.20230103.002
SUN Sijia, PAN Mingzhu. Construction and functionality of heat conversion wood composite materials based on transition metal compounds[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3218-3234. DOI: 10.13801/j.cnki.fhclxb.20230103.002
Citation: SUN Sijia, PAN Mingzhu. Construction and functionality of heat conversion wood composite materials based on transition metal compounds[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3218-3234. DOI: 10.13801/j.cnki.fhclxb.20230103.002

过渡金属化合物构筑热转化木材及其功能实践研究进展

基金项目: 国家自然科学基金(32171704)
详细信息
    通讯作者:

    潘明珠,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: mzpan@njfu.edu.cn

  • 中图分类号: TB332;TB34

Construction and functionality of heat conversion wood composite materials based on transition metal compounds

Funds: National Natural Science Foundation of China (32171704)
  • 摘要: 热能在社会活动中扮演着不可或缺的角色并存在多种转化形式,过渡金属化合物(Transition metal compound,TMC)因其强关联电子体系和固有的电荷、自旋、轨道等自由度和有序相之间存在着竞争与共存关系,可以在光、电、磁和热能之间实现高效转化。然而,以粉末和晶体形式存在的TMC在使用过程中会出现易氧化聚合、体积变化、转化热能易消散及收集困难等问题,限制其热转化效率。木材具有天然的层级孔隙结构和稳定的力学支撑,借助木材中的化学组分可以与TMC形成共价键、离子键、氢键、范德华力等结合方式,促使TMC均匀负载至木材微纳表面或多孔结构中,形成TMC@木材复合材料。此外,木材具有优异的热管理能力,能够调节热能以提高热转化效率。本文基于木材的木质—纤维素大分子网络构造,详细讨论了TMC与实体木材、脱木质素木材、碳化木材的构筑方法和界面结合机制,进一步分析了基于TMC的非辐射衰变、弛豫损耗和金属-绝缘体转变的热转化机制,概述了TMC@木质复合材料在海水淡化、油水分离、建筑节能和火灾预警领域的功能应用。最后,分析了当前基于TMC构建热转化木材的优势和所面临的挑战,以期为木材的先进功能和能量转化提供一定的思路。

     

    Abstract: Thermal energy plays an indispensable role in social activities and can be transformed among various energy sources. Transition metal compound (TMC) enables the efficient conversion of light, electrical and magnetic energy into thermal energy due to the competition and coexistence between its strongly correlated electronic systems and inherent charge, spin, orbital and other degree of freedom and ordered phase. However, used in the form of powder and crystal, TMC owns the problems of oxidation polymerization, volume change, high heat dissipation and collection difficulties, which limits its heat conversion efficiency. Wood has natural hierarchical pore structure and could supply stable mechanical support for TMC. TMC can be uniformly loaded into wood micro-nano surfaces or porous structures by forming covalent bond, ionic bond, hydrogen bond, van der Waals forces with the chemical components of the wood to form TMC@wood composite materials. In addition, wood's excellent thermal management ability can regulate thermal energy to improve heat conversion efficiency. Based on the lign-cellulosic macromolecular network configuration of wood, we discussed the combination method and interfacial binding mechanism of TMC with raw wood, delignification wood and carbonized wood. We further discussed the thermal transformation mechanisms of non-radiative relaxation, relaxation loss and metal-insulator transition of TMC, the functional applications of TMC@wood composite materials in the fields of desalination, oil-water separation, building energy conservation and fire warning are presented. Finally, in view of providing ideas for advanced functionalization and energy conversion of wood, the current advantages and challenges of thermal conversion of TMC@wood are summarized.

     

  • 随着超高速飞行器马赫数的不断提升,对飞行器电缆罩等结构件的质量、力学承载性能、抗静电性能和防热性能等都提出了更为苛刻的要求[1]。传统的飞行器耐高温与承载部件大多采用金属材料,并在表面涂覆涂层来实现防热,这种结构存在质量大、隔热差及耐用性难保证等缺点,难以满足结构-功能一体化的设计需求[2-3]。纤维增强树脂基复合材料由于其丰富的结构设计性、优异的热-力性能和低成本加工与维护等优势,已成为耐高温领域的理想候选材料[4-5]

    为满足纤维增强树脂基复合材料高承载-功能一体化的使用需求,通常采取纤维混杂和使用三维纺织结构的方式[6-7]。例如,碳纤维(CF)和玻璃纤维(GF)混杂不仅能在力学性能上实现互补,提高其承载效率,还可以对纤维进行合理的排布和编织,获得更低的电阻率和导热系数[8-9]。此外,2.5D机织复合材料作为一种新型三维纺织结构复合材料,其纬纱平行排列,经纱在垂直于纬纱的方向以一定角度进行交织。在受力过程中,结构中的经纱可以阻碍裂纹的扩展,有效阻止分层现象发生[10-11]。在使用过程中,2.5D机织复合材料常处于极端热环境下,由高温引起的热应力集中和热变形过大常常导致复合材料提前失效,因此,研究2.5D机织复合材料的热-力学行为具有重要的理论和实践意义[12-13]

    近几十年来,热固性树脂的快速发展,大大加快了纤维增强树脂基复合材料高温力学性能的研究。Ruggles-Wrenn等[14]研究了二维层合和三维正交机织碳/聚酰亚胺复合材料在329℃下的拉伸-压缩疲劳行为。Zhao等[15]围绕2.5D机织碳/双马来酰亚胺树脂(简称为双马树脂)复合材料进行了常温和高温下纬向拉伸疲劳研究,分析了温度和疲劳载荷分别对2.5D机织碳/双马复合材料性能的影响。Song等[16]探究了温度对2.5D机织碳/双马复合材料拉伸性能影响,并分析了其微观损伤模式和高温下的损伤机制。Dang等[17]探究了2.5D机织碳/环氧复合材料温度效应下的弯曲失效机制,发现室温和高温下2.5D机织碳/环氧复合材料的主要破坏机制均包括纤维的断裂、基体开裂和界面脱粘,但高温下因基体软化,试样损伤更加严重。曹淼[18]为研究2.5D机织碳/环氧复合材料的热氧稳定性和层间性能,开展了不同老化时间下的层间剪切和冲击后弯曲力学性能测试,并分析了其力学性能随老化时间退化规律。Rathore等[19]研究了温度对碳-玻纤/环氧层合复合材料弯曲性能的影响,随着温度的升高,复合材料的强度和刚度都持续下降,且碳纤维铺层数更多的复合材料力学性能下降速度更快。于洋等[20]研究了高温老化对三维正交碳-玻纤/双马复合材料的三点弯曲和层间剪切力学性能影响,结果发现Z向纱线可以有效阻挡层间裂纹的扩展,减缓材料的老化速率。目前,学者们针对2.5D机织复合材料的热-力学行为研究主要围绕非混杂结构,而关于2.5D机织混杂结构复合材料在高温环境下的损伤及混杂协同机制的研究还鲜有报道[21-22]

    本文设计制备了2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料(简称为2.5D机织混杂复合材料),并根据复合材料的动态热机械性能设定了力学性能测试温度上限,开展了不同温度场(25℃、150℃、240℃、300℃)下2.5D机织混杂复合材料的三点弯曲和层间剪切力学性能测试。借助光学显微镜和扫描电镜对试样的断口形貌进行了观测,阐明了2.5D机织混杂复合材料的高温力学行为及损伤机制,以期为三维纺织复合材料的多功能-承载一体化设计和应用提供数据依据。

    2.5D机织混杂复合材料增强体选用日本东丽公司生产的T300-3 K型碳纤维和南京玻璃纤维研究设计院生产的E型玻璃纤维,并通过多层角联织机完成织造,基体选用航天材料及工艺研究所研制的R801双马树脂。其中,复合材料截面和预制体结构示意图如图1所示,碳纤维、玻璃纤维和双马树脂性能如表1所示。此外,2.5D机织混杂复合材料增强体的混杂方式为夹芯混杂,整个结构一共有6层,中间4层为玻璃纤维,顶层和底层为碳纤维,增强体编织参数如表2所示。并采用树脂传递模塑工艺(RTM)制备2.5D机织混杂复合材料,树脂注射温度为100℃,固化工艺为:170℃ 2 h、210℃ 3 h、230℃ 3 h,常温冷却,并利用下式计算复合材料的纤维体积分数,结果见表2

    Vf=1MmρabH (1)

    式中:Vf为纤维体积含量(vol%);M为复合材料质量(g);m为增强体质量(g);ρ为双马树脂密度(g·cm−3);abH分别对应着复合材料的长(mm)、宽(mm)、厚(mm)。

    图  1  2.5D机织混杂复合材料截面和预制体结构示意图
    Figure  1.  Schematic diagram of 2.5D woven hybrid composite material section and precast structure
    表  1  复合材料各组分性能参数
    Table  1.  Performance parameters of each component of composite materials
    MaterialTypeTensile strength/MPaTensile modulus/GPaElongation at break/%Density/(g·cm−3)
    Carbon fiber (CF)T300-3 K35302302.11.8
    Glass fiber (GF)E3400 734.82.54
    BismaleimideR801 90 4.22.51.25
    下载: 导出CSV 
    | 显示表格
    表  2  2.5D机织混杂复合材料参数
    Table  2.  2.5D woven hybrid composite material parameters
    YarnFiber linear
    density/tex
    LayerPreformed unit
    density/(yarn·cm−1)
    Composite
    thickness/mm
    Fiber volume
    fraction/vol%
    Warp (CF)200281.8549.87
    Warp (GF)14448
    Weft (CF)20034
    Weft (GF)14448
    下载: 导出CSV 
    | 显示表格

    采用DMA Q800型动态热机械分析仪(DMA)对复合材料动态热机械性能进行测试。试样尺寸为50 mm×10 mm×1.85 mm (长×宽×厚),加载方式为三点弯曲,测试频率为1 Hz,升温速率为5℃/min,测试温度范围为25℃(室温)~350℃。最终根据复合材料热力学性能设定三点弯曲和层间剪切性能测试温度。

    复合材料三点弯曲力学性能测试参照标准GB/T 1449—2005[23],试样尺寸为70 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为54 mm。弯曲强度σ3b、弯曲模量E的计算公式如下所示:

    σ3b=3PL2WH2 (2)
    E=KL34WH3 (3)

    式中:P为最大弯曲载荷(N);L为三点弯曲的测试跨距(mm);W为复合材料试样的宽度(mm);H为复合材料的厚度(mm);K为三点弯曲载荷-位移曲线的斜率值。

    复合材料层间剪切力学性能测试参照标准JC/T 773—2010[24],试样尺寸为20 mm×10 mm×1.85 mm (长×宽×厚),加载速率为1 mm/min,经向加载,测试跨距为10 mm,层间剪切强度τm计算公式如下所示:

    τm=3P4WH (4)

    复合材料的三点弯曲和层间剪切实验均在MTS Criterion C44电子万能试验机(美特斯工业系统(中国)有限公司)上进行,实验温度为25、150、240和300℃。其中,高温下的力学性能测试需借助高温炉进行加热,升热速率为10℃/min,当温度达到设定温度时,保温30 min,使试样受热均匀。每个温度下测试3个试样,取平均值。试样形状尺寸和实验加载图如图2所示。

    图  2  高温力学性能测试设备及加载方式
    Figure  2.  High temperature mechanical properties test equipment and loading method

    采用深圳超眼的DM4带屏显微镜和日本日立SU8100型场发射扫描电子显微镜(SEM)对三点弯曲和层间剪切加载后试样的宏细观损伤形貌进行观测。

    图3为2.5D机织混杂复合材料的DMA曲线,其在高温下的动态力学性能可通过储能模量和损耗因子来表征,其中,储能模量反映材料刚度,损耗因子反映材料形变过程能量耗损大小[25]。测试结果表明,随着温度的升高,2.5D机织混杂复合材料的储能模量逐渐降低,损耗因子先增后减。当温度为300℃时,储能模量保留率仍有72.32%,表现出优异的耐高温性能。当温度升高到304℃左右时,储能模量开始急剧下降,此时的温度为复合材料的玻璃化转变温度(Tg)。基于此,将2.5D机织混杂复合材料三点弯曲和层间剪切力学性能最高测试温度设为300℃。

    图  3  2.5D机织混杂复合材料DMA曲线
    Figure  3.  DMA curves of 2.5D woven hybrid composite

    图4(a)为不同温度下2.5D机织混杂复合材料的三点弯曲载荷-位移曲线。可以看出,2.5D机织混杂复合材料表现出明显的温度效应,随着温度升高,曲线的斜率以及峰值载荷都逐渐下降。在25℃下,初始阶段曲线呈线性上升,在第一次达到峰值载荷后略有下降,这代表试样开始出现损伤,但此时复合材料并未失效,随着载荷重新分配,曲线再次上升。在150℃和240℃高温场中,复合材料载荷-位移曲线与室温下相似,载荷在达到峰值后,也未完全失效,但同室温下相比,载荷波动更加缓和,塑性特征更加显著。在300℃下,此时温度接近复合材料的玻璃化转变温度,树脂开始从玻璃态向高弹态转变,纤维/基体界面结合力减弱,应力传递效率降低,曲线斜率及峰值载荷有明显下降[19]

    图  4  不同温度下2.5D机织混杂复合材料三点弯曲力学性能:(a) 载荷-位移曲线;(b) 弯曲强度和弯曲模量
    Figure  4.  Three-point bending mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Flexural strength and flexural modulus

    图4(b)为不同温度下2.5D机织混杂复合材料的弯曲强度和模量。可以看出,随着温度升高,2.5D机织混杂复合材料的弯曲强度和模量逐渐下降。复合材料在150、240和300℃下的平均弯曲强度分别为261.20、251.63和237.30 MPa,相较于25℃下试样的弯曲强度(308.43 MPa)分别降低了15.31%、18.42%和23.06%;150、240和300℃下的平均弯曲模量分别为27.98、21.14和9.33 GPa,相较于25℃下试样的弯曲模量(31.11 GPa)分别降低了10.06%、32.05%和70.01%。可以看出,相较于弯曲模量,弯曲强度对温度的敏感性更低。

    图5为不同温度下2.5D机织混杂复合材料三点弯曲测试后受压面、受拉面和侧面的损伤形貌。可以看出,随着温度升高,试样受压面和受拉面上的损伤逐渐减弱,从侧面观察到试样的损伤主要集中在试样的上半部分并沿经纱方向扩展,主要的损伤模式包括纱线断裂、基体裂纹、纤维/基体脱粘和分层等。

    图  5  不同温度下2.5 D机织混杂复合材料弯曲损伤宏观形貌
    Figure  5.  Macromorphologies of bending damage of 2.5 D woven hybrid composites at different temperatures

    在25℃下,2.5D机织混杂复合材料表面受损严重,树脂发生脆性失效,典型的破坏模式是受压面的纤维剪切断裂和受拉面的基体开裂。侧面可以看到基体出现细微裂纹、纤维扭结断裂及树脂与纤维束间发生轻微脱粘。其中,纤维的断裂主要集中在复合材料的顶层,这是由于CF断裂应变较低,在弯曲载荷作用下比GF更容易出现损伤。试样底层未发生明显破坏,表现出较好的抗拉性能。随着温度升高(150℃),载荷对试样表面的损伤相对减弱,基体破坏面积减少,在试样的侧面可以看到基体裂纹数量增多且伴有层间裂纹并沿着经纱方向扩展。在240℃下,试样侧面的基体裂纹继续扩张并向厚度方向延展,中间层GF出现局部扭结带,纤维/基体界面脱粘现象更加显著。在300℃下,复合材料韧性增强,试样受拉面仅有局部微裂纹产生,没有出现明显的纤维断裂。但由于复合材料界面粘结强度降低,试样出现了更大面积的脱粘现象。

    为进一步研究2.5D机织混杂复合材料在不同温度下的弯曲破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌观测,如图6所示。可以看出,温度对2.5D机织混杂复合材料的损伤影响显著。在25℃下,可以观察到树脂基体的开裂及纤维束的剪切断裂,且断面较整齐,具有明显的脆性特征。在150℃下,断口中存在明显纤维抽拔,纤维上树脂呈鳞片状附着在其表面,界面剥离特征明显。240℃下,复合材料逐渐表现出塑性特性,可见局部基体发生塑性开裂,界面强度降低,纤维发生扭转和开裂。在300℃下,由于分子热运动加剧,基体软化,复合材料的界面结合状况更差,微裂纹沿复合材料的经纱和纬纱方向扩散,纤维与基体分离严重。

    图  6  不同温度下2.5D机织混杂复合材料弯曲损伤SEM图像
    Figure  6.  SEM images of bending damage of 2.5D woven hybrid composites at different temperatures

    由以上研究可以看出,2.5D机织混杂复合材料在弯曲载荷作用下,试样上侧承受压缩应力,下侧承受拉伸应力,同时伴随着面内剪切作用,复合材料弯曲受力示意图如图7(a)所示。因此,当2.5D机织混杂复合材料受到弯曲载荷时,上侧受压缩应力作用发生局部损伤。随着载荷的增加,纤维束上的纤维微裂纹增加并且不断地沿着轴向扩展。同时,下侧基体受拉开裂,整个破坏是从受压面外侧到受拉面内侧的渐进过程,屈曲状态相反的经纱起主要的承载作用,如图7(b)所示。当温度升至300℃时,由于树脂基体软化,界面黏附力降低,更容易出现脱粘现象。同时,由于软化后的树脂对内部纤维的保护,试样没有明显的纤维断裂,承载主体由纤维向树脂基体转变[26]。此外,纤维和基体热膨胀系数存在一定差异,且碳纤维热膨胀系数(−1×10−6~1×10−6 K−1)和双马树脂热膨胀系数(4.4×10−5 K−1)差异比玻璃纤维(5×10−6~12×10−6 K−1)和双马树脂差异更大。随着温度升高,纤维比树脂以更慢的速率膨胀,会在界面处产生热应力并出现损伤,且碳纤维和双马树脂间的界面损伤更加严重[19, 27]。在弯曲载荷的作用下,损伤开始相互结合并扩展,最终导致复合材料高温下的失效,如图7(c)所示。

    图  7  2.5D机织混杂复合材料弯曲受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  7.  Schematic diagram of bending force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    短梁剪切测试被广泛用于表征材料层间剪切行为,在测试时通过缩小试样弯曲跨厚比来增加内部剪切应力,使试样发生层间破坏从而获得层间剪切强度[28]图8(a)为不同温度下2.5D机织混杂复合材料层间剪切载荷-位移曲线。可以发现,随着温度的升高,纤维和基体间的结合作用减弱,试样抗剪切性能逐渐下降,4条曲线的峰值载荷和斜率逐渐减小并呈塑性断裂特征。在25℃下,试样初始阶段载荷-位移曲线呈近似线性关系,纤维/基体界面保持良好的力学性能。载荷达到峰值后会小幅度下降,这代表试样可能出现了基体开裂和纤维断裂损伤。但试样并未失效,继续加载过程中由于损伤累积,应力呈波动下降直至最终失效,表现出较好的断裂韧性。在150℃和240℃下,试样载荷-位移曲线同室温下相似,此时测试温度没有达到复合材料的玻璃化转变温度,纤维和树脂基体的性能并未受到严重影响。在300℃下,2.5D机织混杂复合材料层间剪切力学性能下降较为明显,这是由于复合材料失效主要由纤维和基体的界面状态决定。此时温度接近复合材料的玻璃化转变温度,基体出现软化,并且由于纤维与其外围树脂热膨胀系数差异导致纤维/基体界面处的的应力传递效率进一步降低。

    图  8  不同温度下2.5D机织混杂复合材料层间剪切力学性能:(a) 载荷-位移曲线;(b) 剪切强度
    Figure  8.  Interlayer shear mechanical properties of 2.5D woven hybrid composites at different temperatures: (a) Load-displacement curves; (b) Shear strength

    不同温度下复合材料的层间剪切强度如图8(b)所示,可知,2.5D机织混杂复合材料层间剪切强度随温度升高不断下降,说明温度对试样层间剪切性能有着显著影响。复合材料在150、240和300℃下的平均弯曲强度分别为30.53、29.72和26.03 MPa,相较于25℃下试样的层间剪切强度(32.11 MPa)分别降低了4.92%、7.47%和18.93%。试样在各温度场下的剪切强度变化不大,表现出优异的层间剪切性能。

    图9为不同温度下2.5D机织混杂复合材料层间剪切测试后的侧面损伤形貌。可以看出,短梁试样上半部分受压出现纱线与基体界面开裂,下半部分呈拉伸破坏并存在明显的分层现象。随着温度升高,界面退化引起损伤范围增大,导致试样最终失效。主要的损伤模式为纱线断裂、基体开裂、界面脱粘及分层等。

    在25℃下,由于剪切应力作用,基体产生微裂纹并在材料内部传播,在纤维/基体界面处发生应力集中,引起分层和基体开裂。由于试样接结经纱在厚度和面内方向的分布,抑制了分层的扩展。试样未出现明显弯折,表明复合材料内部损伤并不严重。在150℃下,试样底部出现了明显的纤维断裂和大面积的界面开裂,其中,CF的断口较为平整,而GF抽拔现象比较严重。在240℃下,试样出现了大面积的界面脱粘和开裂现象,并集中在受压面和受拉面处。在300℃下,基体抵抗变形的能力减弱,试样发生塑性变形。由于纤维和基体的主要作用分别是承载和传递载荷,软化的基体不能有效将来自压头的压应力传递给纤维束,使纤维与树脂界面脱粘和分层破坏进一步加重,层间裂纹、层内横向裂纹和层内纵向裂纹交织在一起,并由表面向内部扩展。

    图  9  不同温度下2.5D机织混杂复合材料层间剪切侧面损伤形貌
    Figure  9.  Morphology of 2.5D woven hybrid composites with interlayer shear side damage at different temperatures

    为进一步研究2.5D机织混杂复合材料在不同温度条件下层间剪切破坏模式和损伤特征,使用SEM对试样进行细观损伤形貌的观测,如图10所示。可以看出,2.5D机织混杂复合材料的失效模式随着温度的升高发生了较大的改变。在25℃下,复合材料表现出较大的脆性,试样断口附近存在大量基体碎屑。同时,纤维表面附有较多树脂,表现出良好的界面黏结性能。在150℃下,纤维表面相对光滑,树脂较少,此时树脂开始软化,界面结合作用减弱。在240℃下,复合材料的界面结合状况更差,纤维束与树脂接触面分离,大量纤维断裂。在300℃下,基体对纤维的黏附力下降,可以清楚地看到纤维的抽拔以及纤维从基体上剥离的轨迹。

    图  10  不同温度下2.5D机织混杂复合材料层间剪切损伤SEM图像
    Figure  10.  SEM images of interlaminar shear damage of 2.5D woven hybrid composites at different temperatures

    短梁法在测定2.5D机织混杂复合材料层间剪切强度时,不仅存在层间剪切应力,还有弯曲应力、横向剪切应力和局部挤压应力等[29],如图11(a)所示。室温下,2.5D机织混杂复合材料试样上侧受压缩应力作用,基体内部出现微小裂纹,纤维产生扭结而断裂,下侧在拉伸应力和剪切应力作用下发生脱粘,进而表现出分层破坏。由于复合材料内部纤维与基体界面黏结良好,有效地阻止了裂纹的扩展和分层破坏,试样失效部分较少,如图11(b)所示。在300℃高温环境下,由于纤维/基体界面性能减弱,软化的基体不能将弯曲载荷及时有效传递给增强体纤维束,在剪切应力作用下更容易产生分层破坏,复合材料损伤区域增大。同时,高温下基体抵抗变形的能力减弱,试样发生塑性变形,纤维弯折程度加大,进而出现应力集中,造成纱线断裂。此外,下侧经纱在拉伸应力作用下会向内收缩,并对相邻纬纱产生挤压,导致其发生相应的挤压破坏,如图11(c)所示。界面开裂区域多、失效部分少,增强体承载大部分剪切应力,与基体之间的应力差异增大,树脂裂纹沿经纱方向扩展。

    图  11  2.5D机织混杂复合材料层间剪切受力及损伤示意图:(a) 受力图;(b) 25℃损伤示意图;(c) 300℃损伤示意图
    Figure  11.  Schematic diagram of interlaminar shear force and damage of 2.5D woven hybrid composites: (a) Force diagram; (b) Schematic diagram of damage at 25℃; (c) Schematic diagram of damage at 300℃

    (1) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有优异的耐高温性能。通过DMA测得该复合材料玻璃化转变温度Tg为304℃,当测试温度升至300℃时,其储能模量保留率仍有72.32%,表现出良好的热稳定性。

    (2) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料具有明显的温度效应。温度上升导致纤维/基体界面结合力减弱,复合材料的弯曲强度、弯曲模量和层间剪切强度逐渐下降,承载主体由纤维向树脂基体转变。

    (3) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的三点弯曲失效为压缩应力、拉伸应力和剪切应力耦合作用下的结果,整个破坏是一个从受压面外侧到受拉面内侧的渐进过程。弯曲载荷下,2.5D机织混杂复合材料的室温破坏模式以局部的纤维断裂和基体开裂为主,而高温破坏模式则以纤维/基体界面脱粘为主导。

    (4) 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料的层间剪切失效为层间剪切应力、弯曲应力、横向剪切应力和局部挤压应力多力耦合作用下的结果。剪切载荷下,2.5D机织混杂复合材料的室温破坏模式主要为分层破坏。而随着温度升高,树脂由脆性失效变为韧性失效,复合材料也因基体软化出现塑性变形,基体开裂、界面脱粘及分层破坏决定了材料的最终失效。

  • 图  1   过渡金属化合物(TMC)热转化的物理学原理、TMC对木材的构筑方式及基于热转化的应用领域

    Figure  1.   Physics of thermal transformation of transition metal compounds (TMC), the way TMC are constructed to wood and the areas based on thermal transformation

    A/D—Analog digital; MO—Methyl orange; TCY—Tetracycline

    图  2   ((a)~(b)) 木材结构的示意图;((c)~(g)) 木材的实体显微图像[17, 21-25]

    Figure  2.   ((a)-(b)) Schematic diagrams of wood structure; ((c)-(g)) Solid microscopic images of wood[17, 21-25]

    图  3   ((a)~(d)) 不同光热转换机制[29,50-51];((e)~(g)) 不同粒径铁磁性材料磁热转化机制[44];((h)~(j)) 温度-电信号转化机制[9,52]

    Figure  3.   ((a)-(d)) Different photothermal conversion mechanisms[29,50-51]; ((e)-(g)) Magnetothermal conversion mechanisms of ferromagnetic materials with different particle sizes[44]; ((h)-(j)) Thermoelectric conversion mechanisms[9,52]

    CB—Conduction band; VB—Valence band; h—Planck constant; v—Frequency; M—Magnetization intensity; Ms—Specific magnetism; Mr—Residual magnetism; H—Magnetic field intensity; Hc—Coercive force; NPs—Nano particles; NWs—Nanowires

    图  4   ((a)~(b)) 过渡金属化合物(TMC)沉积在木材表面[58-60];(c) TMC浸渍至木材内部细胞壁[62-63]

    Figure  4.   ((a)-(b)) Transition metal compounds (TMC) deposition on the wood surface[58-60]; (c) TMC is impregnated into the internal cell wall of the wood[62-63]

    PDMS—Polydimethylsiloxane

    图  5   ((a)~(f)) TMC对脱木素木材(DW)的直接构筑[65];((g)~(h)) TMC与有机物对DW共同构筑[66]

    Figure  5.   ((a)-(f)) TMC direct construction of delignified wood (DW)[65]; ((g)-(h)) Co-construction of DW by TMC and organic matter[66]

    图  6   木材碳化后的结构与TMC的装饰[67]

    Figure  6.   Structure of wood after carbonization and decoration of TMC [67]

    CW—Carbonized wood

    图  7   (a) 蒸发器工作原理;(b) 蒸发器的盐再溶解过程;(c) 天然木材(NW)、涂有高缺陷MoS2的木材(WM-H)合成和微观结构示意图[76];(d) 碳化木-TiO2@TiN超支纳米线蒸发器示意图及TiO2转变为TiN的形貌变化[69]

    Figure  7.   (a) Working principle of evaporator; (b) Salt redissolution process of evaporator; (c) Schematic diagram of synthesis and microstructure of natural wood (NW), wood coated with highly defective MoS2 (WM-H)[76]; (d) Schematic diagram of carbonized wood-TiO2@TiN hyperbranched nanowires evaporator and morphology change of TiO2 to TiN[69]

    图  8   二甲基硅氧烷(PDMS)@WSM焦耳加热和太阳能加热用于清理和回收黏性原油[74]

    Figure  8.   Dimethylsiloxane (PDMS)@WSM Joule heating and solar heating for cleaning and recovery of viscous crude oil[74]

    图  9   ((a)~(b)) 磁性木材合成路线及木材的隔热原理[20];(c) 磁性木基复合相变材料结构示意图[66]

    Figure  9.   ((a)-(b)) Synthetic route of magnetic wood and the principle of thermal insulation of wood[20]; (c) Schematic diagram of the magnetic wood-based composite phase change material[66]

    图  10   (a) Ti3O5智能涂层的制备和火灾预警机制[9];(b) MXene涂层的火灾预警机制[83];((c)~(d)) 热电响应机制与火灾预警[73]

    Figure  10.   (a) Preparation and fire warning mechanism of Ti3O5 smart coatings[9]; (b) Fire warning mechanism for MXene coatings[83]; ((c)-(d)) Thermoelectric response mechanism and fire warning[73]

    CNC—Cellulose nanocrystals; RT—Room temperature; MMT—Montmorillonoid; UPC—2-ureido-4[1H]-pyrimidinone-containing cellulose; FR—Fire retardant; TE—Thermoelectricity

    表  1   TMC@木材复合材料的制备方法

    Table  1   Methods of TMC@wood composite preparation

    Composite
    method
    Operational approachReaction principleAdvantageDisadvantageRef.
    PaintingApply directly to the wood surface and dryCombination of hydroxyl groups on the wood surface by charge attraction or cross-linkingSimplicity of operationBond between TMC and wood is weak, usually by introducing other substances to act as a binder[62, 70-73]
    SoakingWood is soaked in
    TMC mother liquor
    and then aged
    Wool absorption
    of
    wood to load TMC
    Simplicity of operation and mild reaction conditionsFor raw wood TMC can only dip into the surface load, for delignified and carbonized wood it is possible to load deep inside[59, 67, 74]
    Vacuum/ultrasonic

    impregnation
    Wood is soaked in
    TMC mother liquor, and the entire reaction occurs in a vacuum
    Low-pressure effect
    allows TMC to grow evenly in wood
    More uniform
    growth
    of TMC
    Relatively complex operation[58, 66, 75]
    Solvothermal

    method
    Wood and TMC
    mother liquor is placed in a stainless-steel high-pressure reactor with polytetrafluoroethylene
    and then reacted at high temperatures
    TMC grow evenly in wood under high
    temperature and
    pressure
    Uniform and firm growth of the TMC required for the synthesis of the precursor solution in
    the wood at high temperatures
    Complex reaction
    conditions
    [69, 76-77]
    下载: 导出CSV

    表  2   TMC@木材复合材料的组成、特点和应用领域

    Table  2   Components, characteristics, and applications of TMC@wood composites

    WoodTMCCombination methodTMC@woodCharacteristicsApplications
    Basswood

    (DW)
    Fe3O4Fe3O4 cross-linking of wood surface hydroxyl groups and affinity enhancement by polyvinyl alcohol (cross-section)Fe-D-Wood [72]Evaporation rate 1.3 kg·m−2·h−1, 97% strong light absorption over the entire wavelength range, 73% photothermal conversion efficiencyDesalination
    Balsa woodMoS2 with S defects
    (cross-section)
    WM-H [76]Evaporation rate of 1.46 kg·m−2·h−1
    and heat conversion efficiency of 82.5%
    Desalination
    Beech wood (CW)TiO2@TiN
    (cross-section)
    TO@TNBNs-
    CW [69]
    Evaporation rate 1.5252 kg·m−2·h−1, absorbs 97.42% of the sunlight, thermal conversion efficiency 94.01%Desalination
    Poplar woodFeNi
    (cross-section)
    W/FeNi/RGO [71]Evaporation rate 1.5 kg·m−2·h−1, thermal transfer efficiency 99.64%Desalination
    Paulownia woodMnO2Mn interacts with O in the hydroxyl group of the wood through covalent coordination or hydrogen bonding (cross-section)K-wood [59]Evaporation rate 1.22 kg·m−2·h−1, efficiency 81.4%, sunlight absorption 94%Solar steam power, seawater desalination
    BasswoodCuFeSe2By forming Fe-O interactions with wood surface hydroxyl groups
    (cross-section)
    Black wood [58]From 20°C to 51.5°C in 400 s irradiation time, solar thermal efficiency 86.2%Solar steam power, seawater desalination
    Paulownia woodTi3C2
    OH
    Ti3C2 surface hydroxyl modification and covalent bonding between the wood via isocyanate (cross-section)Ti3C2-wood [62]Evaporation rate of 1.465 kg·m−2·h−1 and solar energy conversion
    efficiency of 96%
    Solar steam power, seawater desalination
    Poplar woodVO2
    (cross-section)
    W/VO2-Ba [70]Evaporation rate 1.57 kg·m−2·h−1,
    solar evaporation efficiency 93.45%
    Desalination
    Pinewood (CW)Black TiO2
    (cross-section)
    BTW [77]Evaporation rate of 2.04 kg·m−2·h−1
    and high solar steam efficiency of 90.06%
    Seawater desalination and degradation of organic pollutants
    Balsa wood (CW)Ag3PO4
    (Impregnation to the interior)
    Ag3PO4@CW [67]photothermal conversion efficiency
    of ~88.0% and a water generation
    rate of 1.59 kg·m−2·h−1
    Desalination of sea water, removal of organic dyes, bacteria, heavy metal ions
    Balsa wood
    (DW)
    Ti3C2TxHydrogen bonding via van der Waals forces and abundant hydroxyl groups (Impregnation to the interior)PDMS@WSM [74]1.5 kW·m−2 simulated sunlight heats
    to 66°C, maximum adsorption capacity of 11.2×105 g in 6 min,
    25 mL of crude oil collected in 150 s
    Crude oil spills, energy conditioning and desalination of high brine
    Poplar wood (CW)Fe3O4Formation of Fe-O bonds with
    oxygen-containing functional groups of wood (Carbonized wood powder)
    Fe3O4-GNS/
    CWF/
    PCMC [75]
    Temperature rise above 65°C in
    150 s, enthalpy of phase change greater than 95 J/g, phase change temperature about 55°C, thermal stability below 300°C
    Energy harvesting, conversion and storage
    Balsa wood (DW)Fe3O4Hydrogen bonding and van der Waals forces between wood and organic matter, Fe3O4 is located in the lumen of the tube (Impregnation to the interior)Fe3O4/TD/
    DW [66]
    Large latent heat (179 J/g) and good thermal stability below 112°CMultifunctional thermal energy storage
    Poplar woodFe3O4Formation of Fe-O bonds with
    oxygen-containing functional groups of wood (Impregnation to the interior)
    MW [20]From 25.9°C to 70.1°C in 10 minutes
    at 35 kHz magnetic field
    Architectural, decorative and massage furniture
    Pinus sylvestrisAg2SePlasma treated substrates, introducing polar groups to provide good adhesion (longitudinal section)TE-FR [73]Fire alarm response time of only
    2.0 s and excellent fire resistance
    Self-powered fire warning
    Fir wood/Beech woodTi3O5Interaction with PEI/APP by electrostatic attraction, covalent
    cross-linking, hydrogen and ionic bonding (longitudinal section)
    PEI/APP/
    Ti3O5 [52]
    Fire response time of approx. 3.78 s and significant fire, smoke and weather resistanceFire warning
    Beech woodTi3C2TxStable bonding of the wood surface to MXene through an intermediate bonding bridge with hydrogen bonding of polydopamine, van der Waals forces and mechanical interlocking interactions
    (longitudinal section)
    PA/C-MXene-Wood [83]Fire reaction time 2.1 s,
    photocatalytic removal of VOCs
    Fire warning, photocatalytic removal of VOCs
    PinewoodTi3C2TxHydrogen bonding interactions (longitudinal section)MFNC [84]Fire alarm triggered within 4 s of combustion, coating with self-
    healing and piezoresistive sensing capability
    Fire warning, self-healing and pressure sensitive sensors
    Notes: PEI—Polyetherimide; PA—Polydopamine/ammonium polyphosphate; APP—Ammonium polyphosphate; TE-FR—Thermoelectric flame retardant; MFNC—Multifunctional fire protection nanocoating; TD—1-tetradecanol; GNS—Graphene nanosheets; CWF—Carbonized-wood-flour; PCMC—Phase-change-material composite; BTW—Black titanium dioxide loading on the surface of wood; RGO—Reduced graphene oxide; VOCs—Volatile organic compounds.
    下载: 导出CSV
  • [1]

    AMMAR Y, JOYCE S, NORMAN R, et al. Low-grade thermal energy sources and uses from the process industry in the UK[J]. Applied Energy,2012,89(1):3-20. DOI: 10.1016/j.apenergy.2011.06.003

    [2]

    ZHAO X, ZHANG Z, CHEN J, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle[J]. Applied Energy,2020,257:113995. DOI: 10.1016/j.apenergy.2019.113995

    [3]

    LIU J, LI J, ZHANG S, et al. Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats[J]. Nano Convergence,2022,9(1):13. DOI: 10.1186/s40580-022-00304-y

    [4]

    YU M, XU P, YANG J, et al. Self-growth of MoS2 sponge for highly efficient photothermal cleanup of high-viscosity crude oil spills[J]. Advanced Materials Interfaces,2020,7(4):1901671. DOI: 10.1002/admi.201901671

    [5]

    WAN J, WANG J, GUO H, et al. Constructing ultra-stable photothermal plastics assisted by carbon dots with photo-caged reactivity[J]. Matter,2022,5(9):2864-2881. DOI: 10.1016/j.matt.2022.05.036

    [6]

    MEHDAOUI B, MEFFRE A, LACROIX L M, et al. Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime[J]. Journal of Applied Physics,2010,107(9):09A324. DOI: 10.1063/1.3348795

    [7]

    LI Z, YANG J, LI D, et al. Tuning the reversible magnetocaloric effect in Ni-Mn-In-based alloys through Co and Cu Co-doping[J]. Advanced Electronic Materials,2019,5:1800845.

    [8]

    GUO J, XIE L, LIU C, et al. Effect of Co/Ni substituting Fe on magnetocaloric properties of Fe-based bulk metallic glasses[J]. Metals,2021,11(6):950. DOI: 10.3390/met11060950

    [9]

    ZHANG S, ZHANG Y, HUANG Y P, et al. Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection[J]. Chemical Engineering Journal,2022,450:137910. DOI: 10.1016/j.cej.2022.137910

    [10]

    WU K H, JIANG Y, JIAO S, et al. Synthesis of high purity nano-sized transition-metal carbides[J]. Journal of Materials Research and Technology,2020,9(5):11778-11790. DOI: 10.1016/j.jmrt.2020.08.053

    [11]

    LANY S. Semiconducting transition metal oxides[J]. Jour-nal Physics Condensed Matter,2015,27(28):283203. DOI: 10.1088/0953-8984/27/28/283203

    [12]

    DAGOTTO E. Complexity in strongly correlated electronic systems[J]. Science,2005,309:257-262. DOI: 10.1126/science.1107559

    [13]

    NGAI J H, WALKER F J, AHN C H. Correlated oxide physics and electronics[J]. Annual Review of Materials Research,2014,44(1):1-17. DOI: 10.1146/annurev-matsci-070813-113248

    [14]

    LI W, WANG C, LU X. Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting[J]. Journal of Materials Chemistry A,2021,9(7):3786-3827. DOI: 10.1039/D0TA09495A

    [15]

    IDRIS I, DONG H S, ANDREW M, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination,2021(500):114853.

    [16]

    WU M B, HUANG S, LIU T Y, et al. Compressible carbon sponges from delignified wood for fast cleanup and enhanced recovery of crude oil spills by joule heat and photothermal effect[J]. Advanced Functional Materials,2020,31(3):2006806.

    [17]

    JIANG F, LI T, LI Y, et al. Wood-based nanotechnologies toward sustainability[J]. Advanced Materials,2018,30(1):1703453. DOI: 10.1002/adma.201703453

    [18]

    CHEN C, KUANG Y, ZHU S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials,2020,5(9):642-666. DOI: 10.1038/s41578-020-0195-z

    [19]

    JOHN S S, UWE G H, JARMILA P. Size and function in conifer tracheids and angiosperm vessels[J]. American Journal of Botany,2006,93(10):1490-1500. DOI: 10.3732/ajb.93.10.1490

    [20]

    GAN W, GAO L, XIAO S, et al. Magnetic wood as an effec-tive induction heating material: Magnetocaloric effect and thermal insulation[J]. Advanced Materials Interfaces,2017,4(22):1700777. DOI: 10.1002/admi.201700777

    [21]

    MENON V, RAO M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science,2012,38(4):522-550. DOI: 10.1016/j.pecs.2012.02.002

    [22]

    ZHU M, SONG J, LI T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials,2016,26:5181-5187.

    [23]

    XIA Q Q, CHEN C J, LI T, et al. Solar-assisted fabrication of large-scale, patternable transparent wood[J]. Science Advances,2021,7(5):eabd7342. DOI: 10.1126/sciadv.abd7342

    [24]

    COURET L, IRLE M, BELLONCLE C, et al. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste[J]. Cellulose,2017,24(5):2125-2137. DOI: 10.1007/s10570-017-1252-7

    [25]

    WANG W, WANG X, ZHANG Y, et al. Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses[J]. Industrial Crops and Products,2020,145:112145. DOI: 10.1016/j.indcrop.2020.112145

    [26]

    CAO S, JIANG Q, WU X, et al. Advances in solar evaporator materials for freshwater generation[J]. Journal of Materials Chemistry A,2019,7(42):24092-24123. DOI: 10.1039/C9TA06034K

    [27]

    GUO X Z, ZHANG Y D, QIN D, et al. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum[J]. Journal of Power Sources,2010,195(22):7684-7690. DOI: 10.1016/j.jpowsour.2010.05.033

    [28]

    LIU G, XU J, WANG K. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. DOI: 10.1016/j.nanoen.2017.09.005

    [29]

    WANG J, LI Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1-6.

    [30]

    WANG L, LIU X, DANG Y, et al. Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2[J]. Solid State Sciences,2019,89:67-73. DOI: 10.1016/j.solidstatesciences.2018.12.018

    [31]

    DOMINGOS G H S, RUELLAS T M O, PEÇANHA L O O, et al. ZnO semiconductors obtained by slip casting: Application and reuse in photocatalysis[J]. International Journal of Applied Ceramic Technology,2021,18(3):622-630. DOI: 10.1111/ijac.13698

    [32]

    ABID M A, KADHIM D A. Novel comparison of iron oxide nanoparticle preparation by mixing iron chloride with henna leaf extract with and without applied pulsed laser ablation for methylene blue degradation[J]. Journal of Environmental Chemical Engineering,2020,8(5):104138. DOI: 10.1016/j.jece.2020.104138

    [33]

    SUN L, LI Z L, LI Z, et al. Design and mechanism of core-shell TiO2 nanoparticles as a high-performance photothermal agent[J]. Nanoscale,2017,9(42):16183-16192. DOI: 10.1039/C7NR02848B

    [34]

    YANG H, ZHOU J, DUAN Z, et al. Amorphous TiO2 beats P25 in visible light photo-catalytic performance due to both total-internal-reflection boosted solar photothermal conversion and negative temperature coefficient of the forbidden bandwidth[J]. Applied Catalysis B: Environmental,2022,310:121299. DOI: 10.1016/j.apcatb.2022.121299

    [35]

    ZHU D, CAI L, SUN Z, et al. Efficient degradation of tetracycline by RGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion[J]. Science of the Total Environment,2021,787:147536. DOI: 10.1016/j.scitotenv.2021.147536

    [36]

    QI Y, JIANG J, LIANG X, et al. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Advanced Functional Materials,2021,31(22):2100908. DOI: 10.1002/adfm.202100908

    [37]

    QI F, YANG Z, ZHANG J, et al. Interfacial reaction-induced defect engineering: Enhanced visible and near-infrared absorption of wide band gap metal oxides with abundant oxygen vacancies[J]. ACS Applied Materials & Interfaces,2020,12(49):55417-55425.

    [38]

    ZHU L, GAO M, PEH C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons,2018,5(3):323-343. DOI: 10.1039/C7MH01064H

    [39]

    STEPHAN L, MOSTAFA A, EL-SAYED. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry,2000,19(3):409-453. DOI: 10.1080/01442350050034180

    [40]

    DOTAN H, KFIR O, SHARLIN E, et al. Resonant light trapping in ultrathin films for water splitting[J]. Nature Material,2013,12(2):158-164. DOI: 10.1038/nmat3477

    [41]

    NERL H C, WINTHER K T, HAGE F S, et al. Probing the local nature of excitons and plasmons in few-layer MoS2[J]. npj 2D Materials and Applications,2017,2:1-9.

    [42]

    LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letter,2017,17(1):384-391. DOI: 10.1021/acs.nanolett.6b04339

    [43]

    STARSICH F H L, EBERHARDT C, BOSS A, et al. Coercivity determines magnetic particle heating[J]. Advanced Healthcare Materials,2018,7(19):e1800287. DOI: 10.1002/adhm.201800287

    [44]

    SANGAA D, KHONGORZUL B, UYANGA E, et al. An overview of investigation for ferrite magnetic nanomaterial[J]. Solid State Phenomena,2018,271:51-63. DOI: 10.4028/www.scientific.net/SSP.271.51

    [45]

    PABLO G, RICCARDO D C, LENAIC L, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment[J]. ACS Nano,2012,6(4):3080-3091. DOI: 10.1021/nn2048137

    [46]

    VAJHADIN F, MAZLOUM-ARDAKANI M, SHAHIDI M, et al. MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@Ag magnetic nanohybrids conjugated to the HB5 aptamer[J]. Biosensors and Bioelectronics,2022,195:113626. DOI: 10.1016/j.bios.2021.113626

    [47]

    OH Y, LEE N, KANG H W, et al. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4[J]. Nanotechnology,2016,27(11):115101. DOI: 10.1088/0957-4484/27/11/115101

    [48]

    AONO H, YAMANO Y, NISHIMORI T, et al. Heat generation properties in AC magnetic field for Y3Fe5O12 powder material synthesized by a reverse coprecipitation method[J]. Ceramics International,2015,41(7):8461-8467. DOI: 10.1016/j.ceramint.2015.03.048

    [49]

    TONG S, QUINTO C A, ZHANG L, et al. Size-dependent heating of magnetic iron oxide nanoparticles[J]. ACS Nano,2017,11(7):6808-6816. DOI: 10.1021/acsnano.7b01762

    [50]

    LI M, LIU X, TAN L, et al. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel[J]. Biomaterials Science,2018,6(8):2110-2121. DOI: 10.1039/C8BM00499D

    [51]

    XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications[J]. Advanced Functional Materials,2020,30(47):2000712. DOI: 10.1002/adfm.202000712

    [52]

    ZHANG M, WANG M, ZHANG M, et al. Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite[J]. ACS Applied Materials & Interfaces,2019,11(50):47456-47467.

    [53]

    VICTOR J L, GAUDON M, SALVATORI G, et al. Doubling of the phase transition temperature of VO2 by Fe doping[J]. Journal of Physical Chemistry Letters,2021,12(32):7792-7796. DOI: 10.1021/acs.jpclett.1c02179

    [54]

    LEE D, CHUNG B, SHI Y, et al. Isostructural metal-insulator transition in VO2[J]. Science,2018,362:1037-1040. DOI: 10.1126/science.aam9189

    [55]

    SHABALIN A G, VALLE J, HUA N, et al. Nanoscale imaging and control of volatile and non-volatile resistive switching in VO2[J]. Small,2020,16(50):2005439. DOI: 10.1002/smll.202005439

    [56]

    TOMOHIKO N. Intermediate-temperature sensors based on La0.5Ba0.5MnO3/nano porous anodic aluminum oxide multilayered film thermistors[J]. Journal of Materials Chemistry C,2019(7):5193-5200.

    [57]

    LUISA W, WU T L, ADAM S, et al. Single-nanowire Raman microprobe studies of doping, temperature, and voltage-induced metal-insulator transitions of WxV1-xO2 nanowires[J]. ACS Nano,2011,5(11):8861-8867. DOI: 10.1021/nn203542c

    [58]

    LIU H, CHEN C, WEN H, et al. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. Journal of Materials Che-mistry A,2018,6(39):18839-18846. DOI: 10.1039/C8TA05924A

    [59]

    LI D, HAN D, GUO C, et al. Facile preparation of MnO2-deposited wood for high-efficiency solar steam generation[J]. ACS Applied Energy Materials,2021,4(2):1752-1762. DOI: 10.1021/acsaem.0c02902

    [60]

    SHEN H, CAO J, JIANG J, et al. Anti-weathering properties of a thermally treated wood surface by two-step treatment with titanium dioxide nanoparticle growth and polydimethylsiloxane coating[J]. Progress in Organic Coatings,2018,125:1-7. DOI: 10.1016/j.porgcoat.2018.08.011

    [61]

    GAN W, LIU Y, GAO L, et al. Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature[J]. Ceramics International,2015,41(10):14876-14885. DOI: 10.1016/j.ceramint.2015.08.014

    [62]

    MA N, FU Q, HONG Y, et al. Processing natural wood into an efficient and durable solar steam generation device[J]. ACS Applied Materials & Interfaces,2020,12(15):18165-18173.

    [63]

    SEGMEHL J S, LAROMAINE A, KEPLINGER T, et al. Magnetic wood by in situ synthesis of iron oxide nanoparticles via a microwave-assisted route[J]. Journal of Materials Chemistry C,2018,6(13):3395-3402. DOI: 10.1039/C7TC05849G

    [64]

    OSKAR P, INGO B, PETER F. Biomimetics and biotemplating of natural materials[J]. MRS Bulletin,2010,35:219-225. DOI: 10.1557/mrs2010.655

    [65]

    ZHENG D, YAO W, SUN C, et al. Solar-assisted self-heating Ti3C2Tx-decorated wood aerogel for adsorption and recovery of highly viscous crude oil[J]. Journal of Hazardous Materials Letters,2022,435:129068. DOI: 10.1016/j.jhazmat.2022.129068

    [66]

    YANG H, CHAO W, DI X, et al. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage[J]. Energy Conversion and Management,2019,200:112029. DOI: 10.1016/j.enconman.2019.112029

    [67]

    XI Y, DU C, LI P, et al. Combination of photothermal conversion and photocatalysis toward water purification[J]. Industrial & Engineering Chemistry Research,2022,61(13):4579-4587.

    [68]

    BYRNE C E, NAGLE D C. Carbonized wood monoliths-characterization[J]. Carbon,1997,35(2):267-273. DOI: 10.1016/S0008-6223(96)00135-2

    [69]

    REN P, LI J, ZHANG X, et al. Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material[J]. Materials Today Energy,2020,18:100546. DOI: 10.1016/j.mtener.2020.100546

    [70]

    AZIZNEZHAD M, GOHARSHADI E K, MEHRKHAH R, et al. Alkaline earth metals doped VO2 nanoparticles for enhanced interfacial solar steam generation[J]. Materials Research Bulletin,2022,149:111705. DOI: 10.1016/j.materresbull.2021.111705

    [71]

    MEHRKHAH R, GOHARSHADI E K, MOHAMMADI M. Highly efficient solar desalination and wastewater treatment by economical wood-based double-layer photoabsorbers[J]. Journal of Industrial and Engineering Che-mistry,2021,101:334-347. DOI: 10.1016/j.jiec.2021.05.049

    [72]

    SONG L, ZHANG X F, WANG Z, et al. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation[J]. Desalination,2021,507:115024. DOI: 10.1016/j.desal.2021.115024

    [73]

    XIE H, LAI X, LI H, et al. Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety[J]. Journal of Colloid and Interface Science,2021,602:756-766. DOI: 10.1016/j.jcis.2021.06.054

    [74]

    WANG P L, MA C, YUAN Q, et al. Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect[J]. Journal of Colloid and Interface Science,2022,606:971-982. DOI: 10.1016/j.jcis.2021.08.092

    [75]

    CHAO W, YANG H, CAO G, et al. Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage[J]. Energy,2020,202:117636. DOI: 10.1016/j.energy.2020.117636

    [76]

    HE X, ZHANG L, HU X, et al. Formation of S defects in MoS2-coated wood for high-efficiency seawater desalination[J]. Environmental Science-Nano,2021,8(7):2069-2080. DOI: 10.1039/D1EN00106J

    [77]

    XIAO B, YU F, XIA Y, et al. Wood-based, bifunctional, mulberry-like nanostructured black titania evaporator for solar-driven clean water generation[J]. Energy Technology,2022,10(3):2100679. DOI: 10.1002/ente.202100679

    [78]

    WANG H. Low-energy desalination[J]. Nature Nanotechnology,2018,13(4):273-274. DOI: 10.1038/s41565-018-0118-y

    [79]

    WU L, LI L, LI B, et al. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation[J]. ACS Applied Materials & Interfaces,2015,7(8):4936-4946. DOI: 10.1021/am5091353

    [80]

    LI Q, SUN Q, LI Y, et al. Solar-heating crassula perforata-structured superoleophilic CuO@CuS/PDMS nanowire arrays on copper foam for fast remediation of viscous crude oil spill[J]. ACS Applied Materials & Interfaces,2020,12(17):19476-19482.

    [81]

    CHEN Z, SU X, WU W, et al. Superhydrophobic PDMS@TiO2 wood for photocatalytic degradation and rapid oil-water separation[J]. Surface and Coatings Technology,2022,434:128182. DOI: 10.1016/j.surfcoat.2022.128182

    [82]

    YANG H, CHAO W, WANG S, et al. Self-luminous wood composite for both thermal and light energy storage[J]. Energy Storage Materials,2019,18:15-22. DOI: 10.1016/j.ensm.2019.02.005

    [83]

    ZHANG Y, HUANG Y, LI M C, et al. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood[J]. Chemical Engineering Journal,2022,452(4):139360.

    [84]

    ZENG Q, ZHAO Y, LAI X, et al. Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection[J]. Chemical Engineering Journal,2022,446:136899. DOI: 10.1016/j.cej.2022.136899

  • 期刊类型引用(1)

    1. 李新娅,王宁,卢佳浩,张鹏,夏兆鹏,侯耒. 基于改进Weibull模型的高强缝合锚钉缝线强度预测. 现代纺织技术. 2024(06): 52-60 . 百度学术

    其他类型引用(1)

  • 目的 

    热能在社会活动中扮演着不可或缺的角色并存在多种转化形式。过渡金属化合物(Transition metal compound,TMC)因其强关联电子体系,具有高效的热转化能力。为了避免以粉末和晶体形式存在的TMC在使用过程中出现氧化聚合、体积变化、转化热能消散以及收集困难等问题,可利用木材的自支撑多孔结构有效固定粉末状TMC以达到进一步提高能量之间转化效率的目的。此外,木材具有优异的热管理能力,能够调节热能以提高热转化效率,在热能利用过程中减少热损失。TMC@木材功能复合材料在跨学科研究的方向上显示出巨大的潜力。

    方法 

    木材结构中,各向异性的垂直排列通道以及较大的细胞壁内表面积为TMC提供了足够的收容空间。TMC的官能团和金属离子可以与木材细胞壁的纤维素、半纤维素与木质素上存在的亲水基团(主要为羟基,以及少量的羰基、羧基等)通过离子键、共价键、分子间氢键或范德华力等方式结合,从而有效负载到木材表面或通道内壁上,形成稳定的TMC@木材复合材料。将具有不同光热转化、磁热转化和热电转化特性的TMC引入木材足以丰富其功能和适用性,有望开发集TMC的性能优势以及木材的结构和功能于一体的TMC@木材功能复合材料。

    结果 

    TMC可以构筑于不同处理形式的木材中,主要包括原始木材、脱木素木材和碳化木材。TMC@木材热转化复合材料具有以下几个应用领域:① 海水淡化:基于TMC半导体的窄带隙引发的非辐射复合产热或自由载流子诱导的LSPR产热的物理学原理,将其结合在木材横切面上,利用木材内部丰富的各向异性通道的毛细吸收作用提供充分的水传输,在复合材料界面处进行高效的太阳能水蒸发。② 油水分离:将TMC构筑于木材海绵基体中并进行疏水处理,基于TMC半导体的光热转化效应减小原油粘度,从而实现对含油污水的处理。③建筑节能:基于铁磁性材料(铁氧体)的弛豫损耗产热物理学原理,满足其在低频交变磁场中的磁热转化,并与木材基体复合,实现高效的热能存储,以减少电力使用和气候化成本。④ 火灾预警:基于TMC半导体的金属绝缘体间的转变(Metal-Insulator Transition,MIT)特性,并将其沉积于木材表面制备智能涂层,将温度信号转变为电信号输出,实现实时火灾监测。

    结论 

    木材先进功能化仍处于发展阶段,需要在过程控制和简化方面做进一步的努力,才能达到工程材料应用的水平。TMC是基于光、热、磁、电转化性质丰富的物质,在与木材复合的热转换方面崭露头角,仍有必要开发具有适当性能范围的新材料,以有效利用现有的热资源。更加注重TMC热转换机理研究的同时联系起与木材特性之间的内在联系,如木材的一些理化性质包括各项异性,组成成分、三维结构等,可以结合仿生手段,极大发挥两者的协同作用,提高木材的增值利用空间,才能够极大地推进木材科学领域的发展。可以设想同时采用多种能源转换机制的办法,实现互相协同的效应。今后应致力于将TMC优异的理化性质与结构复杂的实体木材结合起来,保留和功能化细胞壁纳米结构,有助于结构和承载性能,使新的功能可以添加到木材的原始特性中。

图(10)  /  表(2)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  440
  • PDF下载量:  47
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-07
  • 录用日期:  2022-12-14
  • 网络出版日期:  2023-01-02
  • 刊出日期:  2023-06-14

目录

/

返回文章
返回