W掺杂Cr2O3薄膜的制备及其在异丁烯气体检测中的应用

Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing

  • 摘要: 为了实现对异丁烯气体的有效检测,采用气溶胶辅助化学气相沉积(AACVD)技术在氧化铝基底表面合成氧化铬(Cr2O3)及W掺杂Cr2O3(W/Cr2O3)薄膜。通过SEM、TEM、XRD及XPS等检测手段对Cr2O3及W/Cr2O3薄膜的微观形貌、晶体结构和元素结合价态进行分析。结果表明:Cr2O3薄膜厚度约为20 μm,由粒径为50 nm左右的纳米颗粒组成,其结构较松散,而W掺杂Cr2O3后所获薄膜结构致密,颗粒粒径约为15 nm,尺寸明显减小,Cr2O3及W/Cr2O3薄膜均具有单一的六方相晶体结构。气敏测试结果表明,在400℃工作温度条件下,基于W/Cr2O3薄膜所制备的气体传感器相较于Cr2O3气体传感器对2×10−5异丁烯的灵敏度由原来的1.11提升为3.55,并展现出良好的稳定性、抗湿性和气体选择性。

     

    Abstract: In order to effectively monitor isobutylene gas, Cr2O3 and W-doped Cr2O3 (W/Cr2O3) films were successfully synthesized via aerosol-assisted chemical vapor deposition (AACVD) technique on the surface of alumina substrate. The microstructure, crystal structure, and elemental binding valence of Cr2O3 and W/Cr2O3 films were analyzed by SEM, TEM, XRD and XPS. The results show that Cr2O3 film is composed of nanoparticles with the particle size of about 50 nm, a thickness of about 20 μm, and its structure is relatively loose. However, the thin film obtained by W doping Cr2O3 has a compact structure, and the size of nanoparticles is about 15 nm, which is remarkably reduced due to the introduction of W into the Cr2O3 crystal lattice. Both Cr2O3 and W/Cr2O3 films have a single hexagonal crystalline structure. The gas sensitivity test results show that the sensitivity of the gas sensor based on W/Cr2O3 film towards 2×10–5 isobutene increases from 1.11 to 3.55 compared with the Cr2O3 gas sensor at 400℃, and W/Cr2O3 gas sensor exhibits good stability, moisture resistance and gas selectivity.

     

/

返回文章
返回